Numerical Simulation and Investigation of System Parameters of Sonochemical Process

Q4 Engineering 工程设计学报 Pub Date : 2013-09-28 DOI:10.1155/2013/362682
S. Chakma, V. S. Moholkar
{"title":"Numerical Simulation and Investigation of System Parameters of Sonochemical Process","authors":"S. Chakma, V. S. Moholkar","doi":"10.1155/2013/362682","DOIUrl":null,"url":null,"abstract":"This paper presents the effects of various parameters that significantly affect the cavitation. In this study, three types of liquid mediums with different physicochemical properties were considered as the cavitation medium. The effects of various operating parameters such as temperature, pressure, initial bubble radius, dissolved gas content and so forth, were investigated in detail. The simulation results of cavitation bubble dynamics model showed a very interesting link among these parameters for production of oxidizing species. The formation of •OH radical and H2O2 is considered as the results of main effects of sonochemical process. Simulation results of radial motion of cavitation bubble dynamics revealed that bubble with small initial radius gives higher sonochemical effects. This is due to the bubble with small radius can undergo many acoustic cycles before reaching its critical radius when it collapses and produces higher temperature and pressure inside the bubble. On the other hand, due to the low surface tension and high vapor pressure, organic solvents are not suitable for sonochemical reactions.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"20 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2013/362682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 40

Abstract

This paper presents the effects of various parameters that significantly affect the cavitation. In this study, three types of liquid mediums with different physicochemical properties were considered as the cavitation medium. The effects of various operating parameters such as temperature, pressure, initial bubble radius, dissolved gas content and so forth, were investigated in detail. The simulation results of cavitation bubble dynamics model showed a very interesting link among these parameters for production of oxidizing species. The formation of •OH radical and H2O2 is considered as the results of main effects of sonochemical process. Simulation results of radial motion of cavitation bubble dynamics revealed that bubble with small initial radius gives higher sonochemical effects. This is due to the bubble with small radius can undergo many acoustic cycles before reaching its critical radius when it collapses and produces higher temperature and pressure inside the bubble. On the other hand, due to the low surface tension and high vapor pressure, organic solvents are not suitable for sonochemical reactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声化学过程系统参数的数值模拟与研究
本文介绍了对空化有显著影响的各种参数的影响。在本研究中,考虑了三种不同物理化学性质的液体介质作为空化介质。详细考察了温度、压力、初始气泡半径、溶解气体含量等操作参数的影响。空化气泡动力学模型的模拟结果表明,这些参数与氧化物质的产生之间存在着非常有趣的联系。•OH自由基和H2O2的形成被认为是声化学过程主要作用的结果。空化气泡径向运动动力学模拟结果表明,初始半径小的空化气泡声化学效应较好。这是由于小半径的气泡在达到临界半径之前可以经历多次声循环,当它崩溃时,气泡内部会产生更高的温度和压力。另一方面,由于低表面张力和高蒸气压,有机溶剂不适合声化学反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
工程设计学报
工程设计学报 Engineering-Engineering (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
2447
审稿时长
14 weeks
期刊介绍: Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.
期刊最新文献
Innovative design of box elevator epidemic prevention function integrating AD and TRIZ Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer Application progress of artificial intelligence in military confrontation Cloud storage data integrity audit based on an index–stub table Clinical named entity recognition from Chinese electronic medical records using a double-layer annotation model combining a domain dictionary with CRF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1