In silico model to simulate the radiation response at various fractionation from histopathological images of prostate tumors

V. Aubert, O. Acosta, N. Rioux-Leclercq, R. Mathieu, F. Commandeur, R. Crevoisier
{"title":"In silico model to simulate the radiation response at various fractionation from histopathological images of prostate tumors","authors":"V. Aubert, O. Acosta, N. Rioux-Leclercq, R. Mathieu, F. Commandeur, R. Crevoisier","doi":"10.1109/ISBI.2017.7950643","DOIUrl":null,"url":null,"abstract":"Objectives: Using in silico simulations from histopathological cancer prostate specimen, the objectives were to identify the total dose corresponding to various fractionations necessary to destroy the tumor cells (50% to 99.9%) and to assess the impact of the Gleason score on those doses.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"61 1","pages":"818-821"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Objectives: Using in silico simulations from histopathological cancer prostate specimen, the objectives were to identify the total dose corresponding to various fractionations necessary to destroy the tumor cells (50% to 99.9%) and to assess the impact of the Gleason score on those doses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用计算机模型模拟前列腺肿瘤组织病理图像中不同部位的辐射反应
目的:利用组织病理学前列腺癌标本的计算机模拟,目的是确定破坏肿瘤细胞所需的不同部分对应的总剂量(50%至99.9%),并评估Gleason评分对这些剂量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1