Using fine-structured gratings to implement mid-infrared dual-band absorbers

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, APPLIED European Physical Journal-applied Physics Pub Date : 2020-08-01 DOI:10.1051/epjap/2020200087
Xin He, Jinliang Jie, Junbo Yang, Yunxin Han, Sen Zhang
{"title":"Using fine-structured gratings to implement mid-infrared dual-band absorbers","authors":"Xin He, Jinliang Jie, Junbo Yang, Yunxin Han, Sen Zhang","doi":"10.1051/epjap/2020200087","DOIUrl":null,"url":null,"abstract":"A dual narrowband absorber operating at mid-infrared (mid-IR) frequencies was numerically investigated. The structure consists of a fine-structured silicon grating on a gold film. Each unit cell of the fine-structured silicon grating is composed of two different silicon bars. When illuminated by a transverse-magnetic (TM) polarized plane wave, the absorber will create two absorption bands. At normal incidence, the two absorption bands have respective peak wavelengths of ∼3.864 µm and ∼3.994 µm, and respective bandwidths of ∼28 nm and ∼36 nm. The level of absorption can be higher than 0.998. It is shown that the two absorption bands are related to different silicon bars in each unit cell. Moreover, the physical origin of the two absorption bands is attributed to the different surface-plasmon-polariton (SPP) modes excited in the absorber.","PeriodicalId":12228,"journal":{"name":"European Physical Journal-applied Physics","volume":"32 1","pages":"20501"},"PeriodicalIF":0.9000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Physical Journal-applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/epjap/2020200087","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

A dual narrowband absorber operating at mid-infrared (mid-IR) frequencies was numerically investigated. The structure consists of a fine-structured silicon grating on a gold film. Each unit cell of the fine-structured silicon grating is composed of two different silicon bars. When illuminated by a transverse-magnetic (TM) polarized plane wave, the absorber will create two absorption bands. At normal incidence, the two absorption bands have respective peak wavelengths of ∼3.864 µm and ∼3.994 µm, and respective bandwidths of ∼28 nm and ∼36 nm. The level of absorption can be higher than 0.998. It is shown that the two absorption bands are related to different silicon bars in each unit cell. Moreover, the physical origin of the two absorption bands is attributed to the different surface-plasmon-polariton (SPP) modes excited in the absorber.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用精细结构光栅实现中红外双波段吸收器
对工作于中红外(中红外)频率的双窄带吸收器进行了数值研究。该结构由金薄膜上的结构精细的硅光栅组成。细结构硅光栅的每个单元格由两个不同的硅棒组成。当被横磁(TM)极化平面波照射时,吸收器将产生两个吸收带。在正常入射下,两个吸收带的峰值波长分别为~ 3.864µm和~ 3.994µm,带宽分别为~ 28 nm和~ 36 nm。吸收水平可高于0.998。结果表明,两个吸收带与每个晶胞内不同的硅棒有关。此外,两个吸收带的物理起源归因于吸收器中激发的表面等离子体极化子(SPP)模式的不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
84
审稿时长
1.9 months
期刊介绍: EPJ AP an international journal devoted to the promotion of the recent progresses in all fields of applied physics. The articles published in EPJ AP span the whole spectrum of applied physics research.
期刊最新文献
Novel KOH treated Li-CuO as anode for the Application of Lithium-Ion Batteries Interpretation of temperature measurements by the Boltzmann plot method on spatially integrated plasma oxygen spectral lines Calculation of structural, electronic, magnetic and optical properties of C3N monolayer substituted with magnesium Photoluminescence from metal clusters formed in the pores of zeolite by pulsed laser ablation in a liquid phase Characterisation of the waveplate associated to layers in interferential mirrors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1