Liangyan Yang, Zenghui Sun, Jianfeng Li, Lei Shi, Hui Kong, Yuan-zhou Yang, Tong Li
{"title":"Spatiotemporal patterns and driving forces of land-use and land-cover change in the Mu Us Sandy Land, China from 1980 to 2018","authors":"Liangyan Yang, Zenghui Sun, Jianfeng Li, Lei Shi, Hui Kong, Yuan-zhou Yang, Tong Li","doi":"10.1080/15324982.2021.1933648","DOIUrl":null,"url":null,"abstract":"Abstract The understanding of land-use and land-cover change (LUCC) is crucial for the study of global climate change and the terrestrial ecological environment. Sandy land is an important component of the terrestrial ecosystem. This study applied the land-use transition matrix and change trajectory analysis to examine the spatiotemporal characteristics of LUCC from 1980 to 2018 in the Mu Us Sandy Land, China. The influences of soil, meteorological conditions, and national policy on LUCC in this region were also investigated. The results of land-use classification of five remote sensing images captured between 1980 and 2018 showed that Grassland was the dominant land-use type. The areas of Woodland and Built-up land in the study area continued to increase, whereas those of Water bodies and Unused land continued to decrease. The area of Cropland first increased and then decreased. The areas where LUCC was driven by natural factors and anthropogenic factors were 25,428 km2 and 9,683 km2, representing 27.92% and 10.63% of the total area, respectively. The area that experienced no LUCC was 55,950 km 2 (61.44% of the total area). These data showed that LUCC was driven by natural and anthropogenic factors, with anthropogenic factors dominant in driving changes in Cropland, Woodland, and Built-up land, whereas natural factors dominated reductions in the areas of Water bodies and Unused land. Although natural factors played an important role in LUCC, this study showed that anthropogenic factors determine the direction of LUCC.","PeriodicalId":8380,"journal":{"name":"Arid Land Research and Management","volume":"144 1","pages":"109 - 124"},"PeriodicalIF":1.9000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arid Land Research and Management","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/15324982.2021.1933648","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The understanding of land-use and land-cover change (LUCC) is crucial for the study of global climate change and the terrestrial ecological environment. Sandy land is an important component of the terrestrial ecosystem. This study applied the land-use transition matrix and change trajectory analysis to examine the spatiotemporal characteristics of LUCC from 1980 to 2018 in the Mu Us Sandy Land, China. The influences of soil, meteorological conditions, and national policy on LUCC in this region were also investigated. The results of land-use classification of five remote sensing images captured between 1980 and 2018 showed that Grassland was the dominant land-use type. The areas of Woodland and Built-up land in the study area continued to increase, whereas those of Water bodies and Unused land continued to decrease. The area of Cropland first increased and then decreased. The areas where LUCC was driven by natural factors and anthropogenic factors were 25,428 km2 and 9,683 km2, representing 27.92% and 10.63% of the total area, respectively. The area that experienced no LUCC was 55,950 km 2 (61.44% of the total area). These data showed that LUCC was driven by natural and anthropogenic factors, with anthropogenic factors dominant in driving changes in Cropland, Woodland, and Built-up land, whereas natural factors dominated reductions in the areas of Water bodies and Unused land. Although natural factors played an important role in LUCC, this study showed that anthropogenic factors determine the direction of LUCC.
期刊介绍:
Arid Land Research and Management, a cooperating journal of the International Union of Soil Sciences , is a common outlet and a valuable source of information for fundamental and applied research on soils affected by aridity. This journal covers land ecology, including flora and fauna, as well as soil chemistry, biology, physics, and other edaphic aspects. The journal emphasizes recovery of degraded lands and practical, appropriate uses of soils. Reports of biotechnological applications to land use and recovery are included. Full papers and short notes, as well as review articles and book and meeting reviews are published.