A Hybrid Conjugate Gradient Algorithm for Nonlinear System of Equations through Conjugacy Condition

A. Yusuf, Abdullahi Adamu Kiri, Lukman Lawal
{"title":"A Hybrid Conjugate Gradient Algorithm for Nonlinear System of Equations through Conjugacy Condition","authors":"A. Yusuf, Abdullahi Adamu Kiri, Lukman Lawal","doi":"10.47852/bonviewaia3202448","DOIUrl":null,"url":null,"abstract":"the purpose of solving a large-scale system of nonlinear equations, a hybrid conjugate gradient algorithm is introduced in thispaper, based on the convex combination ofβFRkandβPRPkparameters. It is made possible by incorporating the conjugacy condition togetherwith the proposed conjugate gradient search direction. Furthermore, a significant property of the method is that through a non-monotone typeline search it gives a descent search direction. Under appropriate conditions, the algorithm establishes its global convergence. Finally, resultsfrom numerical tests on a set of benchmark test problems indicate that the method is more effective and robust compared to some existingmethods.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"174 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47852/bonviewaia3202448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

the purpose of solving a large-scale system of nonlinear equations, a hybrid conjugate gradient algorithm is introduced in thispaper, based on the convex combination ofβFRkandβPRPkparameters. It is made possible by incorporating the conjugacy condition togetherwith the proposed conjugate gradient search direction. Furthermore, a significant property of the method is that through a non-monotone typeline search it gives a descent search direction. Under appropriate conditions, the algorithm establishes its global convergence. Finally, resultsfrom numerical tests on a set of benchmark test problems indicate that the method is more effective and robust compared to some existingmethods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于共轭条件的非线性方程组的混合共轭梯度算法
为了求解大型非线性方程组,本文介绍了一种基于β frk和β prk参数的凸组合的混合共轭梯度算法。将共轭条件与所提出的共轭梯度搜索方向结合起来,使其成为可能。此外,该方法的一个重要特性是通过非单调型线搜索给出了下降搜索方向。在适当的条件下,该算法具有全局收敛性。最后,对一组基准测试问题进行了数值测试,结果表明,与现有方法相比,该方法具有更好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Methodology of Measurement Intellectualization based on Regularized Bayesian Approach in Uncertain Conditions Stochastic Dual Coordinate Ascent for Learning Sign Constrained Linear Predictors Data Smoothing Filling Method based on ScRNA-Seq Data Zero-Value Identification Batch-Stochastic Sub-Gradient Method for Solving Non-Smooth Convex Loss Function Problems Teaching Reading Skills More Effectively
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1