Parameters identification of coupled seepage and stress field based on genetic algorithms

Xianghui Deng, Rui Wang
{"title":"Parameters identification of coupled seepage and stress field based on genetic algorithms","authors":"Xianghui Deng, Rui Wang","doi":"10.1109/ICNC.2010.5583713","DOIUrl":null,"url":null,"abstract":"For rock mechanics and civil engineering, how to obtain the parameters in seepage field and stress field is very complicated and key for analyzing the coupling problem of seepage field and stress field. Therefore, aim of this paper is to study the parameter inversion method with which the parameters of two fields can be obtained. On the basis of the hydraulic heads and displacements measured, combining with genetic algorithm, the parameter inversion method of coupled seepage and stress field is putting forward. Considering the condition of drawdown of reservoir water level, according to results of coupled seepage and stress analysis assumed to be the measured data, the parameter inversion analysis was made. The results show that the method and calculation program of inverse analysis are valid and feasible in this engineering example.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"85 1","pages":"4171-4175"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2010.5583713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For rock mechanics and civil engineering, how to obtain the parameters in seepage field and stress field is very complicated and key for analyzing the coupling problem of seepage field and stress field. Therefore, aim of this paper is to study the parameter inversion method with which the parameters of two fields can be obtained. On the basis of the hydraulic heads and displacements measured, combining with genetic algorithm, the parameter inversion method of coupled seepage and stress field is putting forward. Considering the condition of drawdown of reservoir water level, according to results of coupled seepage and stress analysis assumed to be the measured data, the parameter inversion analysis was made. The results show that the method and calculation program of inverse analysis are valid and feasible in this engineering example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的渗流与应力场耦合参数识别
对于岩石力学和土木工程来说,如何获得渗流场和应力场的参数是非常复杂的,也是分析渗流场和应力场耦合问题的关键。因此,本文的目的是研究能同时获得两个场参数的参数反演方法。在实测水头和位移的基础上,结合遗传算法,提出了渗流-应力场耦合参数反演方法。考虑水库水位下降的情况,以实测数据作为渗流与应力耦合分析结果,进行了参数反演分析。结果表明,逆分析方法和计算程序在该工程实例中是有效可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BER and HPA Nonlinearities Compensation for Joint Polar Coded SCMA System over Rayleigh Fading Channels Harmonizing Wearable Biosensor Data Streams to Test Polysubstance Detection. eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data. Automatic Detection of Opioid Intake Using Wearable Biosensor. A New Mining Method to Detect Real Time Substance Use Events from Wearable Biosensor Data Stream.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1