{"title":"Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem","authors":"M. Badsi","doi":"10.3934/KRM.2020052","DOIUrl":null,"url":null,"abstract":"The mathematical description of the interaction between a collisional plasma and an absorbing surface is a challenging issue. In this paper, we propose to model this interaction by considering a bi-species Vlasov-Poisson-Boltzmann boundary value problem with boundary conditions that are consistent with the physics. In particular, we show that the wall potential can be uniquely determined from the ambipolarity of the particles flows as the unique solution of a non linear equation. We also prove that it is an increasing function of the electrons re-emission coefficient at the wall. Based on the Schauder fixed point theorem, our analysis establishes the existence of a solution provided, on the one hand that the incoming ions density satisfies a moment condition that generalizes the Historical Bohm criterion, and on the other hand that the collision frequency does not exceed a critical value whose definition is subordinated to the strict validity of our generalized Bohm criterion.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/KRM.2020052","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The mathematical description of the interaction between a collisional plasma and an absorbing surface is a challenging issue. In this paper, we propose to model this interaction by considering a bi-species Vlasov-Poisson-Boltzmann boundary value problem with boundary conditions that are consistent with the physics. In particular, we show that the wall potential can be uniquely determined from the ambipolarity of the particles flows as the unique solution of a non linear equation. We also prove that it is an increasing function of the electrons re-emission coefficient at the wall. Based on the Schauder fixed point theorem, our analysis establishes the existence of a solution provided, on the one hand that the incoming ions density satisfies a moment condition that generalizes the Historical Bohm criterion, and on the other hand that the collision frequency does not exceed a critical value whose definition is subordinated to the strict validity of our generalized Bohm criterion.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.