The Development of Predictive Models for Non-Acidic Lubricity Agents (NALA) using Quantitative Structure Activity Relationships (QSAR)

D. Barr, Christopher L. Friend
{"title":"The Development of Predictive Models for Non-Acidic Lubricity Agents (NALA) using Quantitative Structure Activity Relationships (QSAR)","authors":"D. Barr, Christopher L. Friend","doi":"10.4271/2005-01-3900","DOIUrl":null,"url":null,"abstract":"This study describes the use of Quantitative Structure Activity Relationships (QSAR) to develop predictive models for non-acidic Lubricity agents. The work demonstrates the importance of separating certain chemical families to give better and more robust equations rather than grouping a whole data set together. These models can then be used as important tools in further development work by predicting activities of new compounds before actual synthesis/testing.","PeriodicalId":21404,"journal":{"name":"SAE transactions","volume":"58 1","pages":"1845-1856"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2005-01-3900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study describes the use of Quantitative Structure Activity Relationships (QSAR) to develop predictive models for non-acidic Lubricity agents. The work demonstrates the importance of separating certain chemical families to give better and more robust equations rather than grouping a whole data set together. These models can then be used as important tools in further development work by predicting activities of new compounds before actual synthesis/testing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于定量构效关系(QSAR)的非酸性润滑剂预测模型的建立
本研究描述了使用定量结构活性关系(QSAR)来开发非酸性润滑剂的预测模型。这项工作证明了分离某些化学族的重要性,以得到更好、更可靠的方程,而不是将整个数据集组合在一起。这些模型可以作为进一步开发工作的重要工具,在实际合成/测试之前预测新化合物的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing aeronautic electric propulsion performances by cogeneration and heat recovery Time and spatially resolved temperature measurements of a combusting diesel spray impinging on a wall Physical Properties of Bio-Diesel and Implications for Use of Bio-Diesel in Diesel Engines Control Strategies for Peak Temperature Limitation in DPF Regeneration Supported by Validated Modeling Drivers Involved in Crashes Killing Older Road Users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1