A Tree-Based Approach to Identifying Response Styles with Anchoring Vignettes

IF 0.6 Q3 SOCIAL SCIENCES, INTERDISCIPLINARY Measurement-Interdisciplinary Research and Perspectives Pub Date : 2023-04-03 DOI:10.1080/15366367.2022.2156219
B. Leventhal, C. Zigler
{"title":"A Tree-Based Approach to Identifying Response Styles with Anchoring Vignettes","authors":"B. Leventhal, C. Zigler","doi":"10.1080/15366367.2022.2156219","DOIUrl":null,"url":null,"abstract":"ABSTRACT Survey score interpretations are often plagued by sources of construct-irrelevant variation, such as response styles. In this study, we propose the use of an IRTree Model to account for response styles by making use of self-report items and anchoring vignettes. Specifically, we investigate how the IRTree approach with anchoring vignettes compares to traditional approaches that either do not include anchoring vignettes or do not account for response styles. We analyze secondary data using four different models: 1) total score; 2) graded response model; 3) IRTree without the consideration of anchoring vignettes, and 4) IRTree considering anchoring vignettes. We found significant differences in trait estimates from models that account for response styles compared to those that do not. Additionally, we found differences in trait estimates between the IRTree Models when considering anchoring vignettes and when not. Model comparisons suggest that trait differences are due to adjusting for acquiescence response style.","PeriodicalId":46596,"journal":{"name":"Measurement-Interdisciplinary Research and Perspectives","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement-Interdisciplinary Research and Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15366367.2022.2156219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Survey score interpretations are often plagued by sources of construct-irrelevant variation, such as response styles. In this study, we propose the use of an IRTree Model to account for response styles by making use of self-report items and anchoring vignettes. Specifically, we investigate how the IRTree approach with anchoring vignettes compares to traditional approaches that either do not include anchoring vignettes or do not account for response styles. We analyze secondary data using four different models: 1) total score; 2) graded response model; 3) IRTree without the consideration of anchoring vignettes, and 4) IRTree considering anchoring vignettes. We found significant differences in trait estimates from models that account for response styles compared to those that do not. Additionally, we found differences in trait estimates between the IRTree Models when considering anchoring vignettes and when not. Model comparisons suggest that trait differences are due to adjusting for acquiescence response style.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于树的方法来识别锚定小片段的回应风格
调查分数的解释经常受到构念无关变异的来源的困扰,例如回答风格。在本研究中,我们建议使用IRTree模型通过使用自我报告项目和锚定小片段来解释反应风格。具体来说,我们研究了带有锚定小片段的IRTree方法与不包含锚定小片段或不考虑响应风格的传统方法相比如何。我们使用四种不同的模型分析二手数据:1)总分;2)分级响应模型;3)不考虑锚点的IRTree和4)考虑锚点的IRTree。我们发现,与那些不考虑反应风格的模型相比,考虑反应风格的模型在性状估计上存在显著差异。此外,我们发现IRTree模型在考虑锚定小片段和不考虑锚定小片段时的性状估计存在差异。模型比较表明,性状差异是由于对默认反应方式的调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement-Interdisciplinary Research and Perspectives
Measurement-Interdisciplinary Research and Perspectives SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
A Latent Trait Approach to the Measurement of Physical Fitness Application of Machine Learning Techniques for Fake News Classification The Use of Multidimensional Item Response Theory Estimations in Controlling Differential Item Functioning Opinion Instability and Measurement Errors: A G-Theory Analysis of College Students Predicting the Risk of Diabetes and Heart Disease with Machine Learning Classifiers: The Mediation Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1