Dextransucrase immobilized on activated-chitosan particles as a novel biocatalyst

Natália G. Graebin, Diandra de Andrades, Marina C. Bonin, Rafael C. Rodrigues, Marco A.Z. Ayub
{"title":"Dextransucrase immobilized on activated-chitosan particles as a novel biocatalyst","authors":"Natália G. Graebin,&nbsp;Diandra de Andrades,&nbsp;Marina C. Bonin,&nbsp;Rafael C. Rodrigues,&nbsp;Marco A.Z. Ayub","doi":"10.1016/j.molcatb.2016.12.007","DOIUrl":null,"url":null,"abstract":"<div><p>Dextransucrase from <em>Leuconostoc mesenteroides</em> B-512F was covalently immobilized on glutaraldehyde-actived chitosan particles. The best initial protein loading (400<!--> <!-->mg/g of dried support) showed 197<!--> <!-->U/g of catalytic activity. The optimal reaction pH and temperature of this new biocatalyst were determined to be 4.5 and 20<!--> <!-->°C, respectively. Regarding the thermal stability, the immobilization enhanced enzyme protection against high temperatures, whereas glucose and maltose acted as stabilizers. The biocatalyst was stable under storage at 5<!--> <!-->°C for a month. The biocatalyst presented good operational stability, retaining up to 40% of its initial activity after ten batch cycles of reaction to obtain oligosaccharides. These results suggest the use of the immobilized dextransucrase on chitosan particles as a promising novel biocatalyst to produce dextran and oligosaccharides.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"133 ","pages":"Pages S143-S149"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.12.007","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716302910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 10

Abstract

Dextransucrase from Leuconostoc mesenteroides B-512F was covalently immobilized on glutaraldehyde-actived chitosan particles. The best initial protein loading (400 mg/g of dried support) showed 197 U/g of catalytic activity. The optimal reaction pH and temperature of this new biocatalyst were determined to be 4.5 and 20 °C, respectively. Regarding the thermal stability, the immobilization enhanced enzyme protection against high temperatures, whereas glucose and maltose acted as stabilizers. The biocatalyst was stable under storage at 5 °C for a month. The biocatalyst presented good operational stability, retaining up to 40% of its initial activity after ten batch cycles of reaction to obtain oligosaccharides. These results suggest the use of the immobilized dextransucrase on chitosan particles as a promising novel biocatalyst to produce dextran and oligosaccharides.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固定化葡聚糖酶作为一种新型生物催化剂
以戊二醛活化的壳聚糖颗粒为载体,共价固定了肠系膜白菌B-512F葡聚糖酶。最佳初始蛋白质负荷(400mg /g)的催化活性为197u /g。该新型生物催化剂的最佳反应pH为4.5℃,反应温度为20℃。热稳定性方面,固定化酶增强了酶对高温的保护作用,而葡萄糖和麦芽糖则起到了稳定作用。该生物催化剂在5℃条件下稳定保存一个月。该生物催化剂表现出良好的操作稳定性,经过10批循环反应获得低聚糖后,其初始活性保持在40%以上。这些结果表明,在壳聚糖颗粒上固定化右旋糖酐酶是一种很有前途的新型生物催化剂,可用于生产右旋糖酐和低聚糖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Catalysis B-enzymatic
Journal of Molecular Catalysis B-enzymatic 生物-生化与分子生物学
CiteScore
2.58
自引率
0.00%
发文量
0
审稿时长
3.4 months
期刊介绍: Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation. Papers should report novel and significant advances in one or more of the following topics; Applied and fundamental studies of enzymes used for biocatalysis; Industrial applications of enzymatic processes, e.g. in fine chemical synthesis; Chemo-, regio- and enantioselective transformations; Screening for biocatalysts; Integration of biocatalytic and chemical steps in organic syntheses; Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies; Enzyme immobilization and stabilization, particularly in non-conventional media; Bioprocess engineering aspects, e.g. membrane bioreactors; Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification; Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity; Biomimetic studies related to enzymatic transformations.
期刊最新文献
A highly efficient immobilized MAS1 lipase for the glycerolysis reaction of n-3 PUFA-rich ethyl esters A more polar N-terminal helix releases MBP-tagged Thermus thermophilus proline dehydrogenase from tetramer-polymer self-association Investigation of structural stability and enzymatic activity of glucose oxidase and its subunits A new member of family 8 polysaccharide lyase chondroitin AC lyase (PsPL8A) from Pedobacter saltans displays endo- and exo-lytic catalysis Special issue OxiZymes 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1