VALMOD: A Suite for Easy and Exact Detection of Variable Length Motifs in Data Series

Michele Linardi, Yan Zhu, Themis Palpanas, Eamonn J. Keogh
{"title":"VALMOD: A Suite for Easy and Exact Detection of Variable Length Motifs in Data Series","authors":"Michele Linardi, Yan Zhu, Themis Palpanas, Eamonn J. Keogh","doi":"10.1145/3183713.3193556","DOIUrl":null,"url":null,"abstract":"Data series motif discovery represents one of the most useful primitives for data series mining, with applications to many domains, such as robotics, entomology, seismology, medicine, and climatology, and others. The state-of-the-art motif discovery tools still require the user to provide the motif length. Yet, in several cases, the choice of motif length is critical for their detection. Unfortunately, the obvious brute-force solution, which tests all lengths within a given range, is computationally untenable, and does not provide any support for ranking motifs at different resolutions (i.e., lengths). We demonstrate VALMOD, our scalable motif discovery algorithm that efficiently finds all motifs in a given range of lengths, and outputs a length-invariant ranking of motifs. Furthermore, we support the analysis process by means of a newly proposed meta-data structure that helps the user to select the most promising pattern length. This demo aims at illustrating in detail the steps of the proposed approach, showcasing how our algorithm and corresponding graphical insights enable users to efficiently identify the correct motifs.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"201 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3193556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Data series motif discovery represents one of the most useful primitives for data series mining, with applications to many domains, such as robotics, entomology, seismology, medicine, and climatology, and others. The state-of-the-art motif discovery tools still require the user to provide the motif length. Yet, in several cases, the choice of motif length is critical for their detection. Unfortunately, the obvious brute-force solution, which tests all lengths within a given range, is computationally untenable, and does not provide any support for ranking motifs at different resolutions (i.e., lengths). We demonstrate VALMOD, our scalable motif discovery algorithm that efficiently finds all motifs in a given range of lengths, and outputs a length-invariant ranking of motifs. Furthermore, we support the analysis process by means of a newly proposed meta-data structure that helps the user to select the most promising pattern length. This demo aims at illustrating in detail the steps of the proposed approach, showcasing how our algorithm and corresponding graphical insights enable users to efficiently identify the correct motifs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VALMOD:一套简单而准确地检测数据序列中变长模的工具
数据序列基元发现是数据序列挖掘中最有用的基元之一,应用于机器人、昆虫学、地震学、医学和气候学等许多领域。最先进的motif发现工具仍然需要用户提供motif长度。然而,在一些情况下,基序长度的选择对它们的检测至关重要。不幸的是,测试给定范围内所有长度的明显暴力解决方案在计算上是站不住脚的,并且不支持在不同分辨率(即长度)下对图案进行排序。我们展示了VALMOD,我们的可扩展motif发现算法,它可以有效地找到给定长度范围内的所有motif,并输出一个长度不变的motif排名。此外,我们通过新提出的元数据结构来支持分析过程,该结构可以帮助用户选择最有希望的模式长度。本演示旨在详细说明所提出方法的步骤,展示我们的算法和相应的图形见解如何使用户能够有效地识别正确的图案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1