Foaming behavior of the fluorinated ethylene propylene copolymer assisted with supercritical carbon dioxide

IF 3.2 4区 工程技术 Q2 CHEMISTRY, APPLIED Journal of Cellular Plastics Pub Date : 2020-11-25 DOI:10.1177/0021955X20964003
Ziyin Jiang, Yun-fei Zhang, Chang-jing Gong, Zhen Yao, A. Shukla, Kun Cao
{"title":"Foaming behavior of the fluorinated ethylene propylene copolymer assisted with supercritical carbon dioxide","authors":"Ziyin Jiang, Yun-fei Zhang, Chang-jing Gong, Zhen Yao, A. Shukla, Kun Cao","doi":"10.1177/0021955X20964003","DOIUrl":null,"url":null,"abstract":"Foaming behavior of the fluorinated ethylene propylene copolymer (FEP) and its composites assisted with supercritical carbon dioxide (scCO2) as the blowing agent were investigated. The batch foaming process was applied at temperature ranging from 250°C to 265°C and pressure ranging between 12 MPa and 24 MPa. The optimal foaming temperature and saturation pressure were obtained for both pure FEP and FEP composites with 1 wt% different-sized BaTiO3 as nucleating agent. The cell diameter of pure FEP foam ranging from 80–140 µm was observed while the cell diameter decreased to 20–40 µm after adding BaTiO3 particles. The cell density of foamed FEP with BaTiO3 increased significantly from 106 to 108 cells/cm3 and the expansion ratio ranged between 4.0 and 5.5. Moreover, a decrease in an abnormal phenomenon that expansion ratio for the pure FEP foam was observed as the saturation pressure increased. This unexpected phenomenon can be explained by the relationship between foaming and crystallization coupling processes.","PeriodicalId":15236,"journal":{"name":"Journal of Cellular Plastics","volume":"41 1","pages":"893 - 909"},"PeriodicalIF":3.2000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Plastics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0021955X20964003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

Foaming behavior of the fluorinated ethylene propylene copolymer (FEP) and its composites assisted with supercritical carbon dioxide (scCO2) as the blowing agent were investigated. The batch foaming process was applied at temperature ranging from 250°C to 265°C and pressure ranging between 12 MPa and 24 MPa. The optimal foaming temperature and saturation pressure were obtained for both pure FEP and FEP composites with 1 wt% different-sized BaTiO3 as nucleating agent. The cell diameter of pure FEP foam ranging from 80–140 µm was observed while the cell diameter decreased to 20–40 µm after adding BaTiO3 particles. The cell density of foamed FEP with BaTiO3 increased significantly from 106 to 108 cells/cm3 and the expansion ratio ranged between 4.0 and 5.5. Moreover, a decrease in an abnormal phenomenon that expansion ratio for the pure FEP foam was observed as the saturation pressure increased. This unexpected phenomenon can be explained by the relationship between foaming and crystallization coupling processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超临界二氧化碳辅助下氟化乙烯丙烯共聚物的发泡行为
以超临界二氧化碳(scCO2)为发泡剂,研究了氟化乙丙共聚物(FEP)及其复合材料的发泡性能。间歇式发泡工艺的温度范围为250℃~ 265℃,压力范围为12 MPa ~ 24 MPa。得到了纯FEP和添加1 wt%不同粒径BaTiO3为成核剂的FEP复合材料的最佳发泡温度和饱和压力。纯FEP泡沫的孔径为80 ~ 140µm,加入BaTiO3颗粒后孔径减小到20 ~ 40µm。添加BaTiO3的泡沫FEP的细胞密度从106个细胞/cm3显著增加到108个细胞/cm3,膨胀比在4.0 ~ 5.5之间。纯FEP泡沫的膨胀率随饱和压力的增大而减小。这种意想不到的现象可以用发泡和结晶耦合过程之间的关系来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cellular Plastics
Journal of Cellular Plastics 工程技术-高分子科学
CiteScore
5.00
自引率
16.00%
发文量
19
审稿时长
3 months
期刊介绍: The Journal of Cellular Plastics is a fully peer reviewed international journal that publishes original research and review articles covering the latest advances in foamed plastics technology.
期刊最新文献
I-WP geometry structural assessment: A theoretical, experimental, and numerical analysis Foam density measurement using a 3D scanner Effect of temperature on the mechanical behavior of pvc foams Preparation and energy absorption of flexible polyurethane foam with hollow glass microsphere A review on the mechanical behaviour of microcellular and nanocellular polymeric foams: What is the effect of the cell size reduction?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1