CliqueMap

Arjun Singhvi, Aditya Akella, Maggie Anderson, R. Cauble, Harshad Deshmukh, D. Gibson, Milo M. K. Martin, Amanda Strominger, T. Wenisch, Amin Vahdat
{"title":"CliqueMap","authors":"Arjun Singhvi, Aditya Akella, Maggie Anderson, R. Cauble, Harshad Deshmukh, D. Gibson, Milo M. K. Martin, Amanda Strominger, T. Wenisch, Amin Vahdat","doi":"10.1145/3452296.3472934","DOIUrl":null,"url":null,"abstract":"Distributed in-memory caching is a key component of modern Internet services. Such caches are often accessed via remote procedure call (RPC), as RPC frameworks provide rich support for productionization, including protocol versioning, memory efficiency, auto-scaling, and hitless upgrades. However, full-featured RPC limits performance and scalability as it incurs high latencies and CPU overheads. Remote Memory Access (RMA) offers a promising alternative, but meeting productionization requirements can be a significant challenge with RMA-based systems due to limited programmability and narrow RMA primitives. This paper describes the design, implementation, and experience derived from CliqueMap, a hybrid RMA/RPC caching system. CliqueMap has been in production use in Google's datacenters for over three years, currently serves more than 1PB of DRAM, and underlies several end-user visible services. CliqueMap makes use of performant and efficient RMAs on the critical serving path and judiciously applies RPCs toward other functionality. The design embraces lightweight replication, client-based quoruming, self-validating server responses, per-operation client-side retries, and co-design with the network layers. These foci lead to a system resilient to the rigors of production and frequent post deployment evolution.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452296.3472934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Distributed in-memory caching is a key component of modern Internet services. Such caches are often accessed via remote procedure call (RPC), as RPC frameworks provide rich support for productionization, including protocol versioning, memory efficiency, auto-scaling, and hitless upgrades. However, full-featured RPC limits performance and scalability as it incurs high latencies and CPU overheads. Remote Memory Access (RMA) offers a promising alternative, but meeting productionization requirements can be a significant challenge with RMA-based systems due to limited programmability and narrow RMA primitives. This paper describes the design, implementation, and experience derived from CliqueMap, a hybrid RMA/RPC caching system. CliqueMap has been in production use in Google's datacenters for over three years, currently serves more than 1PB of DRAM, and underlies several end-user visible services. CliqueMap makes use of performant and efficient RMAs on the critical serving path and judiciously applies RPCs toward other functionality. The design embraces lightweight replication, client-based quoruming, self-validating server responses, per-operation client-side retries, and co-design with the network layers. These foci lead to a system resilient to the rigors of production and frequent post deployment evolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aquila 1Pipe ARROW Insights from operating an IP exchange provider Bento
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1