Hyper-Parameter Tuning in Deep Neural Network Learning

Tiffany Zhan
{"title":"Hyper-Parameter Tuning in Deep Neural Network Learning","authors":"Tiffany Zhan","doi":"10.5121/csit.2022.121809","DOIUrl":null,"url":null,"abstract":"Deep learning has been increasingly used in various applications such as image and video recognition, recommender systems, image classification, image segmentation, medical image analysis, natural language processing, brain–computer interfaces, and financial time series. In deep learning, a convolutional neural network (CNN) is regularized versions of multilayer perceptrons. Multilayer perceptrons usually mean fully connected networks, that is, each neuron in one layer is connected to all neurons in the next layer. The full connectivity of these networks makes them prone to overfitting data. Typical ways of regularization, or preventing overfitting, include penalizing parameters during training or trimming connectivity. CNNs use relatively little pre-processing compared to other image classification algorithms. Given the rise in popularity and use of deep neural network learning, the problem of tuning hyperparameters is increasingly prominent tasks in constructing efficient deep neural networks. In this paper, the tuning of deep neural network learning (DNN) hyper-parameters is explored using an evolutionary based approach popularized for use in estimating solutions to problems where the problem space is too large to get an exact solution.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.121809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has been increasingly used in various applications such as image and video recognition, recommender systems, image classification, image segmentation, medical image analysis, natural language processing, brain–computer interfaces, and financial time series. In deep learning, a convolutional neural network (CNN) is regularized versions of multilayer perceptrons. Multilayer perceptrons usually mean fully connected networks, that is, each neuron in one layer is connected to all neurons in the next layer. The full connectivity of these networks makes them prone to overfitting data. Typical ways of regularization, or preventing overfitting, include penalizing parameters during training or trimming connectivity. CNNs use relatively little pre-processing compared to other image classification algorithms. Given the rise in popularity and use of deep neural network learning, the problem of tuning hyperparameters is increasingly prominent tasks in constructing efficient deep neural networks. In this paper, the tuning of deep neural network learning (DNN) hyper-parameters is explored using an evolutionary based approach popularized for use in estimating solutions to problems where the problem space is too large to get an exact solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度神经网络学习中的超参数整定
深度学习已经越来越多地应用于图像和视频识别、推荐系统、图像分类、图像分割、医学图像分析、自然语言处理、脑机接口和金融时间序列等各种应用中。在深度学习中,卷积神经网络(CNN)是多层感知器的正则化版本。多层感知器通常意味着完全连接的网络,即一层中的每个神经元都连接到下一层的所有神经元。这些网络的完全连接使它们容易产生过拟合数据。典型的正则化或防止过拟合的方法包括在训练期间惩罚参数或修剪连通性。与其他图像分类算法相比,cnn使用的预处理相对较少。随着深度神经网络学习的普及和应用,超参数的整定问题日益成为构建高效深度神经网络的重要任务。在本文中,深度神经网络学习(DNN)超参数的调优使用一种基于进化的方法进行了探索,这种方法被广泛用于估计问题空间太大而无法获得精确解的问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Methodology of Measurement Intellectualization based on Regularized Bayesian Approach in Uncertain Conditions Stochastic Dual Coordinate Ascent for Learning Sign Constrained Linear Predictors Data Smoothing Filling Method based on ScRNA-Seq Data Zero-Value Identification Batch-Stochastic Sub-Gradient Method for Solving Non-Smooth Convex Loss Function Problems Teaching Reading Skills More Effectively
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1