{"title":"Study on the microwave heating temperature uniformity of an intelligent synergistic mode stirrer","authors":"Biao Yang, Feiyun Peng, Cheng Cheng, Zhaogang Wu, Hongbin Huang","doi":"10.1080/08327823.2023.2235550","DOIUrl":null,"url":null,"abstract":"Abstract Aiming at the intercoupling of multiple physics and the time-varying characteristics of boundary conditions in the microwave heating process, how to optimize the temperature uniformity of materials with a cooperative-mode stirrer is focused in this paper. First, the formation of standing waves can be effectively avoided by introducing the mode stirrer, thereby improving the heating efficiency of the material. Description of pattern stirrer motion processes using implicit functions and level set methods. Second, in order to optimize the temperature uniformity of the material, the stirrer is made intelligent, and the electromagnetic field distribution can be optimized by using different stirrer positions and directions, and the temperature uniformity is improved through intelligent coordination of stirrers in different positions. Finally, the finite element method is used to perform numerical simulation calculations on integer and continuous variables. The results show that the proposed method can improve the temperature uniformity of the conventional microwave heating model by 28.2%–81.44% and 23.2%∼63.91% at each level and lead hammer section respectively, and can improve the heating efficiency by 14.8%∼36.4%. According to its performance when heating different shapes and different materials, the proposed method is efficient and feasible.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwave Power and Electromagnetic Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08327823.2023.2235550","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Aiming at the intercoupling of multiple physics and the time-varying characteristics of boundary conditions in the microwave heating process, how to optimize the temperature uniformity of materials with a cooperative-mode stirrer is focused in this paper. First, the formation of standing waves can be effectively avoided by introducing the mode stirrer, thereby improving the heating efficiency of the material. Description of pattern stirrer motion processes using implicit functions and level set methods. Second, in order to optimize the temperature uniformity of the material, the stirrer is made intelligent, and the electromagnetic field distribution can be optimized by using different stirrer positions and directions, and the temperature uniformity is improved through intelligent coordination of stirrers in different positions. Finally, the finite element method is used to perform numerical simulation calculations on integer and continuous variables. The results show that the proposed method can improve the temperature uniformity of the conventional microwave heating model by 28.2%–81.44% and 23.2%∼63.91% at each level and lead hammer section respectively, and can improve the heating efficiency by 14.8%∼36.4%. According to its performance when heating different shapes and different materials, the proposed method is efficient and feasible.
期刊介绍:
The Journal of the Microwave Power Energy (JMPEE) is a quarterly publication of the International Microwave Power Institute (IMPI), aimed to be one of the primary sources of the most reliable information in the arts and sciences of microwave and RF technology. JMPEE provides space to engineers and researchers for presenting papers about non-communication applications of microwave and RF, mostly industrial, scientific, medical and instrumentation. Topics include, but are not limited to: applications in materials science and nanotechnology, characterization of biological tissues, food industry applications, green chemistry, health and therapeutic applications, microwave chemistry, microwave processing of materials, soil remediation, and waste processing.