{"title":"Optical and electronic properties of organoboron compounds in solvent","authors":"Yong Ding, Rui Li, Yue Gao, Jingkai Shan","doi":"10.4208/JAMS.071917.091517A","DOIUrl":null,"url":null,"abstract":"Abstract. Organoboron compounds 1-4 with an aryl ring directly bound to a (FMes)2B group through B-C bonds in vacuum, Hexane, Toluene, THF, CH3CN were theoretically studied using DFT with B3LYP functional and 6-31G (d) basis set, and TD-DFT with CAM-B3LYP functional and 6-31G (d) basis set. The absorption and fluorescence spectra of compounds 1-4 are determined in the same and different solvents. It is found that the electronic transition is the most efficient when compounds 1-4 are in CH3CN, the most polar solvent. The spectral contrast of compounds 3 and 4 is studied under different conditions. The charge difference density (CDD) is determined using the data from the intramolecular charge transfer of compounds 1-4 using 3D cube with large oscillator strength.","PeriodicalId":15131,"journal":{"name":"Journal of Atomic and Molecular Sciences","volume":"112 1","pages":"63-69"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atomic and Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/JAMS.071917.091517A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Organoboron compounds 1-4 with an aryl ring directly bound to a (FMes)2B group through B-C bonds in vacuum, Hexane, Toluene, THF, CH3CN were theoretically studied using DFT with B3LYP functional and 6-31G (d) basis set, and TD-DFT with CAM-B3LYP functional and 6-31G (d) basis set. The absorption and fluorescence spectra of compounds 1-4 are determined in the same and different solvents. It is found that the electronic transition is the most efficient when compounds 1-4 are in CH3CN, the most polar solvent. The spectral contrast of compounds 3 and 4 is studied under different conditions. The charge difference density (CDD) is determined using the data from the intramolecular charge transfer of compounds 1-4 using 3D cube with large oscillator strength.