{"title":"Examining Techniques to Solving Imbalanced Datasets in Educational Data Mining Systems","authors":"Ahmed Al-Ashoor, S. Abdullah","doi":"10.47839/ijc.21.2.2589","DOIUrl":null,"url":null,"abstract":"The educational data mining research attempts have contributed in developing policies to improve student learning in different levels of educational institutions. One of the common challenges to building accurate classification and prediction systems is the imbalanced distribution of classes in the data collected. This study investigates data-level techniques and algorithm-level techniques. Six classifiers from each technique are used to explore their effectiveness to handle the imbalanced data problem while predicting students’ graduation grade based on their performance at the first stage. The classifiers are tested using the k-fold cross-validation approach before and after applying the data-level and algorithm-level techniques. For the purpose of evaluation, various evaluation metrics have been used such as accuracy, precision, recall, and f1-score. The results showed that the classifiers do not perform well with imbalanced dataset, and the performance could be improved by using these techniques. As for the level of improvement, it varies from one technique to another. Additionally, the results of the statistical hypothesis testing confirmed that there were no statistically significant differences for classifiers of the two techniques.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.21.2.2589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
Abstract
The educational data mining research attempts have contributed in developing policies to improve student learning in different levels of educational institutions. One of the common challenges to building accurate classification and prediction systems is the imbalanced distribution of classes in the data collected. This study investigates data-level techniques and algorithm-level techniques. Six classifiers from each technique are used to explore their effectiveness to handle the imbalanced data problem while predicting students’ graduation grade based on their performance at the first stage. The classifiers are tested using the k-fold cross-validation approach before and after applying the data-level and algorithm-level techniques. For the purpose of evaluation, various evaluation metrics have been used such as accuracy, precision, recall, and f1-score. The results showed that the classifiers do not perform well with imbalanced dataset, and the performance could be improved by using these techniques. As for the level of improvement, it varies from one technique to another. Additionally, the results of the statistical hypothesis testing confirmed that there were no statistically significant differences for classifiers of the two techniques.
期刊介绍:
The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.