Yanyan Li, Beijie Shao, Yujie Peng, Junyu Qian, Wenkai Li, Xinliang Wang, Xingyan Liu, Xiaoming Lu, Yi Xu, Y. Leng, Ruxin Li
{"title":"Ultra-broadband pulse generation via hollow-core fiber compression and frequency doubling for ultra-intense lasers","authors":"Yanyan Li, Beijie Shao, Yujie Peng, Junyu Qian, Wenkai Li, Xinliang Wang, Xingyan Liu, Xiaoming Lu, Yi Xu, Y. Leng, Ruxin Li","doi":"10.1017/hpl.2022.44","DOIUrl":null,"url":null,"abstract":"Abstract We demonstrate an ultra-broadband high temporal contrast infrared laser source based on cascaded optical parametric amplification, hollow-core fiber (HCF) and second harmonic generation processes. In this setup, the spectrum of an approximately 1.8 μm laser pulse has near 1 μm full bandwidth by employing an argon gas-filled HCF. Subsequently, after frequency doubling with cascaded crystals and dispersion compensation by a fused silica wedge pair, 9.6 fs (~3 cycles) and 150 μJ pulses centered at 910 nm with full bandwidth of over 300 nm can be generated. The energy stability of the output laser pulse is excellent with 0.8% (root mean square) over 20 min, and the temporal contrast is >1012 at –10 ps before the main pulse. The excellent temporal and spatial characteristics and stability make this laser able to be used as a good seed source for ultra-intense and ultrafast laser systems.","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"15 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Power Laser Science and Engineering","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/hpl.2022.44","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We demonstrate an ultra-broadband high temporal contrast infrared laser source based on cascaded optical parametric amplification, hollow-core fiber (HCF) and second harmonic generation processes. In this setup, the spectrum of an approximately 1.8 μm laser pulse has near 1 μm full bandwidth by employing an argon gas-filled HCF. Subsequently, after frequency doubling with cascaded crystals and dispersion compensation by a fused silica wedge pair, 9.6 fs (~3 cycles) and 150 μJ pulses centered at 910 nm with full bandwidth of over 300 nm can be generated. The energy stability of the output laser pulse is excellent with 0.8% (root mean square) over 20 min, and the temporal contrast is >1012 at –10 ps before the main pulse. The excellent temporal and spatial characteristics and stability make this laser able to be used as a good seed source for ultra-intense and ultrafast laser systems.
期刊介绍:
High Power Laser Science and Engineering (HPLaser) is an international, peer-reviewed open access journal which focuses on all aspects of high power laser science and engineering.
HPLaser publishes research that seeks to uncover the underlying science and engineering in the fields of high energy density physics, high power lasers, advanced laser technology and applications and laser components. Topics covered include laser-plasma interaction, ultra-intense ultra-short pulse laser interaction with matter, attosecond physics, laser design, modelling and optimization, laser amplifiers, nonlinear optics, laser engineering, optical materials, optical devices, fiber lasers, diode-pumped solid state lasers and excimer lasers.