{"title":"Novel Technology of Concentric Coiled Tubing Enhances Ultra-Low Pressure Reservoir Wellbore Cleanouts in Kuwait","authors":"M. Almatar, F. Alshammari, Naser Bader Alhouti","doi":"10.2118/193341-MS","DOIUrl":null,"url":null,"abstract":"\n Wells in the South Ratqa field often fill with sand. Ultra low bottom-hole pressure did not allow efficient sand cleanouts in several wells. Despite using massive amounts of nitrogen during clean out, and largest available CT size (2.375\") to ensure enough annular velocity; severe fluid losses occurred into the formation, which resulted in decreased well production post clean outs, moreover handling energized returns has always been a logistic and safety hazard\n Recently, concentric coiled tubing (CCT) technology was employed for the first time in Kuwait and five wells were identified as viable fill cleanout candidates for which traditional cleanout methods had proved inefficient at best and many times unsuccessful. The system uses concentric coiled tubing and a special vacuum tool designed to apply a localized drawdown, which would deliver the sand particles through the Coiled Tubing / Coiled tubing annulus to surface. Returns were handled using H2S resistant lines into a desander.\n A carefully engineered cleanout program enabled removal of more than 12 MT of sand from four vertical wells, and also identified the formation damage in a horizontal wellbore. The identification of wellbore damage revealed the best intervention to cure the damage and eliminated speculative remedies that sometimes increased the damage done to reservoir. Additionally, the layout of well plots was designed in a very congested way to maximize output but made it impractical to have return pits, requiring mobile tanks to handle returns, while the energized nature of returns in conventional nitrogen jobs are dangerous to handle in a closed tank environment. CCT eliminated that hazard as the returns are not energized.\n The campaign has pushed the boundaries of the coiled tubing interventions in Kuwait and has unlocked several wellbore cleanout opportunities using the CCT technology","PeriodicalId":11079,"journal":{"name":"Day 4 Thu, November 15, 2018","volume":"162 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 15, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193341-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wells in the South Ratqa field often fill with sand. Ultra low bottom-hole pressure did not allow efficient sand cleanouts in several wells. Despite using massive amounts of nitrogen during clean out, and largest available CT size (2.375") to ensure enough annular velocity; severe fluid losses occurred into the formation, which resulted in decreased well production post clean outs, moreover handling energized returns has always been a logistic and safety hazard
Recently, concentric coiled tubing (CCT) technology was employed for the first time in Kuwait and five wells were identified as viable fill cleanout candidates for which traditional cleanout methods had proved inefficient at best and many times unsuccessful. The system uses concentric coiled tubing and a special vacuum tool designed to apply a localized drawdown, which would deliver the sand particles through the Coiled Tubing / Coiled tubing annulus to surface. Returns were handled using H2S resistant lines into a desander.
A carefully engineered cleanout program enabled removal of more than 12 MT of sand from four vertical wells, and also identified the formation damage in a horizontal wellbore. The identification of wellbore damage revealed the best intervention to cure the damage and eliminated speculative remedies that sometimes increased the damage done to reservoir. Additionally, the layout of well plots was designed in a very congested way to maximize output but made it impractical to have return pits, requiring mobile tanks to handle returns, while the energized nature of returns in conventional nitrogen jobs are dangerous to handle in a closed tank environment. CCT eliminated that hazard as the returns are not energized.
The campaign has pushed the boundaries of the coiled tubing interventions in Kuwait and has unlocked several wellbore cleanout opportunities using the CCT technology