{"title":"A variational saturation-value model for image decomposition: Illumination and reflectance","authors":"Wei Wang, Caifei Li","doi":"10.3934/ipi.2021061","DOIUrl":null,"url":null,"abstract":"In this paper, we study to decompose a color image into the illumination and reflectance components in saturation-value color space. By considering the spatial smoothness of the illumination component, the total variation regularization of the reflectance component, and the data-fitting in saturation-value color space, we develop a novel variational saturation-value model for image decomposition. The main aim of the proposed model is to formulate the decomposition of a color image such that the illumination component is uniform with only brightness information, and the reflectance component contains the color information. We establish the theoretical result about the existence of the solution of the proposed minimization problem. We employ a primal-dual algorithm to solve the proposed minimization problem. Experimental results are shown to illustrate the effectiveness of the proposed decomposition model in saturation-value color space, and demonstrate the performance of the proposed method is better than the other testing methods.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2021061","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study to decompose a color image into the illumination and reflectance components in saturation-value color space. By considering the spatial smoothness of the illumination component, the total variation regularization of the reflectance component, and the data-fitting in saturation-value color space, we develop a novel variational saturation-value model for image decomposition. The main aim of the proposed model is to formulate the decomposition of a color image such that the illumination component is uniform with only brightness information, and the reflectance component contains the color information. We establish the theoretical result about the existence of the solution of the proposed minimization problem. We employ a primal-dual algorithm to solve the proposed minimization problem. Experimental results are shown to illustrate the effectiveness of the proposed decomposition model in saturation-value color space, and demonstrate the performance of the proposed method is better than the other testing methods.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.