{"title":"A geometric look at MHD and the Braginsky dynamo","authors":"Andrew D. Gilbert, J. Vanneste","doi":"10.1080/03091929.2020.1839896","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper considers magnetohydrodynamics (MHD) and some of its applications from the perspective of differential geometry, considering the dynamics of an ideal fluid flow and magnetic field on a general three-dimensional manifold, equipped with a metric and an induced volume form. The benefit of this level of abstraction is that it clarifies basic aspects of fluid dynamics such as how certain quantities are transported, how they transform under the action of mappings (e.g. the flow map between Lagrangian labels and Eulerian positions), how conservation laws arise, and the origin of certain approximations that preserve the mathematical structure of classical mechanics. First, the governing equations for ideal MHD are derived in a general setting by means of an action principle and making use of Lie derivatives. The way in which these equations transform under a pull back by the map taking the position of a fluid parcel to a background location is detailed. This is then used to parameterise Alfvén waves using concepts of pseudomomentum and pseudofield, in parallel with the development of Generalised Lagrangian Mean theory in hydrodynamics. Finally non-ideal MHD is considered with a sketch of the development of the Braginsky -dynamo in a general setting. Expressions for the α-tensor are obtained, including a novel geometric formulation in terms of connection coefficients, and related to formulae found elsewhere in the literature.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"119 1","pages":"436 - 471"},"PeriodicalIF":1.1000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1839896","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACT This paper considers magnetohydrodynamics (MHD) and some of its applications from the perspective of differential geometry, considering the dynamics of an ideal fluid flow and magnetic field on a general three-dimensional manifold, equipped with a metric and an induced volume form. The benefit of this level of abstraction is that it clarifies basic aspects of fluid dynamics such as how certain quantities are transported, how they transform under the action of mappings (e.g. the flow map between Lagrangian labels and Eulerian positions), how conservation laws arise, and the origin of certain approximations that preserve the mathematical structure of classical mechanics. First, the governing equations for ideal MHD are derived in a general setting by means of an action principle and making use of Lie derivatives. The way in which these equations transform under a pull back by the map taking the position of a fluid parcel to a background location is detailed. This is then used to parameterise Alfvén waves using concepts of pseudomomentum and pseudofield, in parallel with the development of Generalised Lagrangian Mean theory in hydrodynamics. Finally non-ideal MHD is considered with a sketch of the development of the Braginsky -dynamo in a general setting. Expressions for the α-tensor are obtained, including a novel geometric formulation in terms of connection coefficients, and related to formulae found elsewhere in the literature.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.