ENHANCEMENT OF GENERIC CODE CLONE DETECTION MODEL FOR PYTHON APPLICATION

Ilyana Najwa Aiza Asmad, Al-Fahim Mubarak Ali, Nik Intan Syahiddatul Ilani Jailani
{"title":"ENHANCEMENT OF GENERIC CODE CLONE DETECTION MODEL FOR PYTHON APPLICATION","authors":"Ilyana Najwa Aiza Asmad, Al-Fahim Mubarak Ali, Nik Intan Syahiddatul Ilani Jailani","doi":"10.15282/ijsecs.8.1.2022.1.0092","DOIUrl":null,"url":null,"abstract":"Identical code fragments in different locations are recognized as code clones. There are four native terminologies of code clones concluded as Type-1, Type-2, Type-3 and Type-4. Code clones can be identified using various approaches and models. Generic Code Clone Detection (GCCD) model was created to detect all four terminologies of code clones through five processes. A prototype has been developed to detect code clones in Java programming language that starts with Pre-processing Transformation, Parameterization, Categorization and ends with the Match Detection process. Hence, this work targeted to enhance the prototype using a GCCD model to identify all clone types in Python language. Enhancements are done in the Pre-processing process and parameterization process of the GCCD model to fit the Python language criteria. Results are improved by finding the best constant value and suitable weightage according to Python language. Proposed enhancement results of the Python language clone detection in GCCD model imply that Public as the weightage indicator and def as the best constant value.","PeriodicalId":31240,"journal":{"name":"International Journal of Software Engineering and Computer Systems","volume":"235 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Software Engineering and Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijsecs.8.1.2022.1.0092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identical code fragments in different locations are recognized as code clones. There are four native terminologies of code clones concluded as Type-1, Type-2, Type-3 and Type-4. Code clones can be identified using various approaches and models. Generic Code Clone Detection (GCCD) model was created to detect all four terminologies of code clones through five processes. A prototype has been developed to detect code clones in Java programming language that starts with Pre-processing Transformation, Parameterization, Categorization and ends with the Match Detection process. Hence, this work targeted to enhance the prototype using a GCCD model to identify all clone types in Python language. Enhancements are done in the Pre-processing process and parameterization process of the GCCD model to fit the Python language criteria. Results are improved by finding the best constant value and suitable weightage according to Python language. Proposed enhancement results of the Python language clone detection in GCCD model imply that Public as the weightage indicator and def as the best constant value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
python应用中通用代码克隆检测模型的增强
在不同位置的相同代码片段被识别为代码克隆。代码克隆有四种本地术语,归纳为Type-1、Type-2、Type-3和Type-4。可以使用各种方法和模型来识别代码克隆。建立了通用代码克隆检测(GCCD)模型,通过五个过程检测所有四种代码克隆术语。已经开发了一个原型来检测Java编程语言中的代码克隆,该原型从预处理转换、参数化、分类开始,以匹配检测过程结束。因此,本工作旨在使用GCCD模型增强原型,以识别Python语言中的所有克隆类型。在GCCD模型的预处理过程和参数化过程中进行了增强,以适应Python语言标准。通过根据Python语言找到最佳常数值和合适的权重来改进结果。提出的Python语言克隆检测在GCCD模型中的增强结果表明Public作为权重指标,并定义为最佳常数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
14
期刊最新文献
The Mobile Augmented Reality Application for Improving Learning of Electronic Component Module in TVET A Systematic Mapping on Android-based Platform for Smart Inventory System Sentiment Classification of Tweets with Explicit Word Negations and Emoji Using Deep Learning Protocol Efficiency Using Multiple Level Encoding in Quantum Secure Direct Communication Protocol SECURING IOT HEALTHCARE APPLICATIONS AND BLOCKCHAIN: ADDRESSING SECURITY ATTACKS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1