Pranesh K Gopalakrishnamurthy, Channabasavaraj Sandur
{"title":"Investigation of Dynamic Mechanical Behavior of Nanosilica Filled Carbon-Kevlar-Epoxy Polymer Hybrid Nanocomposite","authors":"Pranesh K Gopalakrishnamurthy, Channabasavaraj Sandur","doi":"10.18280/acsm.460305","DOIUrl":null,"url":null,"abstract":"Reinforcement of epoxy-carbon-Kevlar fabric composite with the addition of nanosilica has resulted in the evolution of new hybrid polymer nanocomposite, which results in the improved mechanical properties of polymer hybrid nanocomposite. The current investigation concentrated on the dynamic mechanical behavior of unfilled and nanosilica filled carbon-Kevlar-epoxy polymer composite with five and four layers of carbon and Kevlar woven fibers respectively with epoxy matrix (5C4K). Nanosilica was mixed into the epoxy at different weight percentages (wt.%) of 0, 0.5, 1.0, and 1.5. The laminates were fabricated using the vacuum-assisted resin infusion moulding (VARIM) technique. The dynamic mechanical properties, storage modulus, loss modulus, damping factor (tan delta), and glass transition temperature was investigated using a dynamic-mechanical analyzer at temperature ranging from 25 to 165 degrees Celsius. The test specimens were prepared in accordance with the ASTM D4065 standard to investigate dynamic mechanical analysis (DMA) of the hybrid polymer nanocomposite. The results of the tested specimens for dynamic mechanical behaviors of carbon-Kevlar-epoxy hybrid nanocomposites are very much influenced by the presence of nanosilica. The storage modulus, loss modulus for nanosilica added hybrid polymer composites were more than the unfilled ones and the damping factor (tan delta) was observed more in an unfilled composite.","PeriodicalId":7877,"journal":{"name":"Annales de Chimie - Science des Matériaux","volume":"1004 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de Chimie - Science des Matériaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.460305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Reinforcement of epoxy-carbon-Kevlar fabric composite with the addition of nanosilica has resulted in the evolution of new hybrid polymer nanocomposite, which results in the improved mechanical properties of polymer hybrid nanocomposite. The current investigation concentrated on the dynamic mechanical behavior of unfilled and nanosilica filled carbon-Kevlar-epoxy polymer composite with five and four layers of carbon and Kevlar woven fibers respectively with epoxy matrix (5C4K). Nanosilica was mixed into the epoxy at different weight percentages (wt.%) of 0, 0.5, 1.0, and 1.5. The laminates were fabricated using the vacuum-assisted resin infusion moulding (VARIM) technique. The dynamic mechanical properties, storage modulus, loss modulus, damping factor (tan delta), and glass transition temperature was investigated using a dynamic-mechanical analyzer at temperature ranging from 25 to 165 degrees Celsius. The test specimens were prepared in accordance with the ASTM D4065 standard to investigate dynamic mechanical analysis (DMA) of the hybrid polymer nanocomposite. The results of the tested specimens for dynamic mechanical behaviors of carbon-Kevlar-epoxy hybrid nanocomposites are very much influenced by the presence of nanosilica. The storage modulus, loss modulus for nanosilica added hybrid polymer composites were more than the unfilled ones and the damping factor (tan delta) was observed more in an unfilled composite.