A New Probability Distribution for Modeling Failure and Service Times: Properties, Copulas and Various Estimation Methods

Hanaa Elgohari, M. Ibrahim, H. Yousof
{"title":"A New Probability Distribution for Modeling Failure and Service Times: Properties, Copulas and Various Estimation Methods","authors":"Hanaa Elgohari, M. Ibrahim, H. Yousof","doi":"10.19139/SOIC-2310-5070-1101","DOIUrl":null,"url":null,"abstract":"In this paper, a new generalization of the Pareto type II model is introduced and studied. The new density canbe “right skewed” with heavy tail shape and its corresponding failure rate can be “J-shape”, “decreasing” and “upside down (or increasing-constant-decreasing)”. The new model may be used as an “under-dispersed” and “over-dispersed” model. Bayesian and non-Bayesian estimation methods are considered. We assessed the performance of all methods via simulation study. Bayesian and non-Bayesian estimation methods are compared in modeling real data via two applications. In modeling real data, the maximum likelihood method is the best estimation method. So, we used it in comparing competitive models. Before using the the maximum likelihood method, we performed simulation experiments to assess the finite sample behavior of it using the biases and mean squared errors.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/SOIC-2310-5070-1101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, a new generalization of the Pareto type II model is introduced and studied. The new density canbe “right skewed” with heavy tail shape and its corresponding failure rate can be “J-shape”, “decreasing” and “upside down (or increasing-constant-decreasing)”. The new model may be used as an “under-dispersed” and “over-dispersed” model. Bayesian and non-Bayesian estimation methods are considered. We assessed the performance of all methods via simulation study. Bayesian and non-Bayesian estimation methods are compared in modeling real data via two applications. In modeling real data, the maximum likelihood method is the best estimation method. So, we used it in comparing competitive models. Before using the the maximum likelihood method, we performed simulation experiments to assess the finite sample behavior of it using the biases and mean squared errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
故障和服务时间建模的一种新的概率分布:性质、关系式和各种估计方法
本文引入并研究了Pareto II型模型的一种新的推广。新密度为“右偏”,重尾形,故障率为“j型”、“递减”和“倒挂(或递增-恒减)”。新模型可作为“欠分散”和“过度分散”模型使用。考虑了贝叶斯和非贝叶斯估计方法。我们通过模拟研究评估了所有方法的性能。通过实例比较了贝叶斯和非贝叶斯估计方法在实际数据建模中的应用。在真实数据建模中,极大似然法是最好的估计方法。所以,我们用它来比较竞争模型。在使用最大似然法之前,我们进行了模拟实验,利用偏差和均方误差来评估它的有限样本行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution A Berry-Esseen Bound for Nonlinear Statistics with Bounded Differences The Weibull Distribution: Reliability Characterization Based on Linear and Circular Consecutive Systems Infinity Substitute in Finding Exact Minimum of Total Weighted Tardiness in Tight-Tardy Progressive 1-machine Scheduling by Idling-free Preemptions Testing the Validity of Lindley Model Based on Informational Energy with Application to Real Medical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1