{"title":"Spin Orbit Torque Device based Stochastic Multi-bit Synapses for On-chip STDP Learning","authors":"Gyuseong Kang, Yunho Jang, Jongsun Park","doi":"10.1145/3218603.3218654","DOIUrl":null,"url":null,"abstract":"As a large number of neurons and synapses are needed in spike neural network (SNN) design, emerging devices have been employed to implement synapses and neurons. In this paper, we present a stochastic multi-bit spin orbit torque (SOT) memory based synapse, where only one SOT device is switched for potentiation and depression using modified Gray code. The modified Gray code based approach needs only N devices to represent 2N levels of synapse weights. Early read termination scheme is also adopted to reduce the power consumption of training process by turning off less associated neurons and its ADCs. For MNIST dataset, with comparable classification accuracy, the proposed SNN architecture using 3-bit synapse achieves 68.7% reduction of ADC overhead compared to the conventional 8-level synapse.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
As a large number of neurons and synapses are needed in spike neural network (SNN) design, emerging devices have been employed to implement synapses and neurons. In this paper, we present a stochastic multi-bit spin orbit torque (SOT) memory based synapse, where only one SOT device is switched for potentiation and depression using modified Gray code. The modified Gray code based approach needs only N devices to represent 2N levels of synapse weights. Early read termination scheme is also adopted to reduce the power consumption of training process by turning off less associated neurons and its ADCs. For MNIST dataset, with comparable classification accuracy, the proposed SNN architecture using 3-bit synapse achieves 68.7% reduction of ADC overhead compared to the conventional 8-level synapse.