Rigid-Link Constraints and Rigid-Body Molecules

D. Schwarzenbach, J. Didisheim
{"title":"Rigid-Link Constraints and Rigid-Body Molecules","authors":"D. Schwarzenbach, J. Didisheim","doi":"10.1107/S0108767387099525","DOIUrl":null,"url":null,"abstract":"The rigid-bond condition for harmonic thermal parameters states that the difference of the mean-square displacements of atoms A and B along the covalent bond A-B is negligible. In this paper, the corresponding condition for non-bonded intramolecular distances is called a rigid link. Rigid-body motion according to the TLS formalism requires all intramolecular links to be rigid. Conversely, a cornpiece set of rigid links is not necessarily equivalent to rigid-body motion. An algorithm is presented for the determination of the maximum number QN of independent rigid links of an N-atom molecule. In general for site symmetry 1, QN = N-1 for linear and 3N-6 for planar molecules. For three-dimensional molecules, QN = N(N - 1)/2, N ≤ 8 and 6N-20, N ≥ 8. For particular geometries, QN may be smaller. For many molecules, QN rigid links are equivalent to rigid-body motion. Notable exceptions are most linear and planar molecules, and all molecules with six or seven atoms. Higher site symmetries reduce and often eliminate these differences between rigid links and rigid-body motion. The use of rigid-link restraints in crystallographic least squares is recommended. They provide a computationally simple means of relaxing the constraints imposed on the displacement parameters by the TLS model for any molecular site symmetry.","PeriodicalId":7001,"journal":{"name":"Acta Crystallographica","volume":"68 1","pages":"226-232"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/S0108767387099525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The rigid-bond condition for harmonic thermal parameters states that the difference of the mean-square displacements of atoms A and B along the covalent bond A-B is negligible. In this paper, the corresponding condition for non-bonded intramolecular distances is called a rigid link. Rigid-body motion according to the TLS formalism requires all intramolecular links to be rigid. Conversely, a cornpiece set of rigid links is not necessarily equivalent to rigid-body motion. An algorithm is presented for the determination of the maximum number QN of independent rigid links of an N-atom molecule. In general for site symmetry 1, QN = N-1 for linear and 3N-6 for planar molecules. For three-dimensional molecules, QN = N(N - 1)/2, N ≤ 8 and 6N-20, N ≥ 8. For particular geometries, QN may be smaller. For many molecules, QN rigid links are equivalent to rigid-body motion. Notable exceptions are most linear and planar molecules, and all molecules with six or seven atoms. Higher site symmetries reduce and often eliminate these differences between rigid links and rigid-body motion. The use of rigid-link restraints in crystallographic least squares is recommended. They provide a computationally simple means of relaxing the constraints imposed on the displacement parameters by the TLS model for any molecular site symmetry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
刚性连杆约束和刚体分子
谐波热参数的刚性键条件表明,原子A和原子B沿共价键A-B的均方位移差可以忽略不计。本文将分子内非键距离的相应条件称为刚性键。根据TLS形式,刚体运动要求所有分子内连接都是刚性的。相反,一组刚体连杆并不一定等同于刚体运动。提出了一种确定n原子分子独立刚性键最大QN数的算法。一般来说,对于位对称1,线性分子的QN = N-1,平面分子的QN = 3N-6。对于三维分子,QN = N(N - 1)/2, N≤8和6N-20, N≥8。对于特定的几何形状,QN可能更小。对于许多分子,QN刚性连杆相当于刚体运动。值得注意的例外是大多数线性和平面分子,以及所有具有六或七个原子的分子。较高的位置对称性减少并经常消除刚性连杆和刚体运动之间的这些差异。建议在结晶最小二乘中使用刚性连杆约束。它们提供了一种计算简单的方法来放松由TLS模型对任何分子位置对称的位移参数施加的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Protein secondary-structure description with a coarse-grained model: code and datasets in ActivePapers format Advances in Crystallographic Image Processing for Scanning Probe Microscopy 3D Printing of Crystallographic Models for Interdisciplinary College Education Supramolecular anion coordination networks with (6.3) cation-templated topologies The solid solution Co3.6Mg1.4Cl2(TeO3)4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1