{"title":"Nuclei segmentation in histopathology images using deep neural networks","authors":"Peter Naylor, M. Laé, F. Reyal, Thomas Walter","doi":"10.1109/ISBI.2017.7950669","DOIUrl":null,"url":null,"abstract":"Analysis and interpretation of stained tumor sections is one of the main tools in cancer diagnosis and prognosis, which is mainly carried out manually by pathologists. The avent of digital pathology provides us with the challenging opportunity to automatically analyze large amounts of these complex image data in order to draw biological conclusions from them and to study cellular and tissular phenotypes at a large scale. One of the bottlenecks for such approaches is the automatic segmentation of cell nuclei from this type of image data. Here, we present a fully automated workflow to segment nuclei from histopathology image data by using deep neural networks trained from a set of manually annotated images and by processing the posterior probability maps in order to split jointly segmented nuclei. Further, we provide the image data set that has been generated for this study as a benchmark set to the scientific community.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"45 1","pages":"933-936"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"156","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 156
Abstract
Analysis and interpretation of stained tumor sections is one of the main tools in cancer diagnosis and prognosis, which is mainly carried out manually by pathologists. The avent of digital pathology provides us with the challenging opportunity to automatically analyze large amounts of these complex image data in order to draw biological conclusions from them and to study cellular and tissular phenotypes at a large scale. One of the bottlenecks for such approaches is the automatic segmentation of cell nuclei from this type of image data. Here, we present a fully automated workflow to segment nuclei from histopathology image data by using deep neural networks trained from a set of manually annotated images and by processing the posterior probability maps in order to split jointly segmented nuclei. Further, we provide the image data set that has been generated for this study as a benchmark set to the scientific community.