Detecting overlapping communities in folksonomies

Abhijnan Chakraborty, Saptarshi Ghosh, Niloy Ganguly
{"title":"Detecting overlapping communities in folksonomies","authors":"Abhijnan Chakraborty, Saptarshi Ghosh, Niloy Ganguly","doi":"10.1145/2309996.2310032","DOIUrl":null,"url":null,"abstract":"Folksonomies like Delicious and LastFm are modeled as tripartite (user-resource-tag) hypergraphs for studying their network properties. Detecting communities of similar nodes from such networks is a challenging problem. Most existing algorithms for community detection in folksonomies assign unique communities to nodes, whereas in reality, users have multiple topical interests and the same resource is often tagged with semantically different tags. The few attempts to detect overlapping communities work on projections of the hypergraph, which results in significant loss of information contained in the original tripartite structure. We propose the first algorithm to detect overlapping communities in folksonomies using the complete hypergraph structure. Our algorithm converts a hypergraph into its corresponding line-graph, using measures of hyperedge similarity, whereby any community detection algorithm on unipartite graphs can be used to produce overlapping communities in the folksonomy. Through extensive experiments on synthetic as well as real folksonomy data, we demonstrate that the proposed algorithm can detect better community structures as compared to existing state-of-the-art algorithms for folksonomies.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"137 1","pages":"213-218"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2309996.2310032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Folksonomies like Delicious and LastFm are modeled as tripartite (user-resource-tag) hypergraphs for studying their network properties. Detecting communities of similar nodes from such networks is a challenging problem. Most existing algorithms for community detection in folksonomies assign unique communities to nodes, whereas in reality, users have multiple topical interests and the same resource is often tagged with semantically different tags. The few attempts to detect overlapping communities work on projections of the hypergraph, which results in significant loss of information contained in the original tripartite structure. We propose the first algorithm to detect overlapping communities in folksonomies using the complete hypergraph structure. Our algorithm converts a hypergraph into its corresponding line-graph, using measures of hyperedge similarity, whereby any community detection algorithm on unipartite graphs can be used to produce overlapping communities in the folksonomy. Through extensive experiments on synthetic as well as real folksonomy data, we demonstrate that the proposed algorithm can detect better community structures as compared to existing state-of-the-art algorithms for folksonomies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测大众分类法中的重叠社区
像Delicious和LastFm这样的大众分类法被建模为三方(用户-资源-标签)超图,用于研究它们的网络属性。从这样的网络中检测相似节点的社区是一个具有挑战性的问题。大多数现有的大众分类法社区检测算法为节点分配唯一的社区,而在现实中,用户有多个主题兴趣,同一资源通常被标记为语义上不同的标签。检测重叠社区的少数尝试是在超图的投影上工作的,这导致了原始三方结构中包含的信息的重大损失。我们提出了第一个使用完全超图结构来检测民俗分类中重叠社区的算法。我们的算法使用超边缘相似度度量将超图转换为相应的线形图,因此任何单部图上的社区检测算法都可以用于在大众分类法中产生重叠的社区。通过对合成和真实民俗分类法数据的大量实验,我们证明了与现有的最先进的民俗分类法算法相比,所提出的算法可以检测到更好的社区结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HT '22: 33rd ACM Conference on Hypertext and Social Media, Barcelona, Spain, 28 June 2022- 1 July 2022 HT '21: 32nd ACM Conference on Hypertext and Social Media, Virtual Event, Ireland, 30 August 2021 - 2 September 2021 HT '20: 31st ACM Conference on Hypertext and Social Media, Virtual Event, USA, July 13-15, 2020 Detecting Changes in Suicide Content Manifested in Social Media Following Celebrity Suicides. QualityRank: assessing quality of wikipedia articles by mutually evaluating editors and texts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1