{"title":"Dictionary-free MRI parameter estimation via kernel ridge regression","authors":"Gopal Nataraj, J. Nielsen, J. Fessler","doi":"10.1109/ISBI.2017.7950455","DOIUrl":null,"url":null,"abstract":"MRI parameter quantification has diverse applications, but likelihood-based methods typically require nonconvex optimization due to nonlinear signal models. To avoid expensive grid searches used in prior works, we propose to learn a nonlinear estimator from simulated training examples and (approximate) kernel ridge regression. As proof of concept, we apply kernel-based estimation to quantify six parameters per voxel describing the steady-state magnetization dynamics of two water compartments from simulated data. In relevant regions of fast-relaxing compartmental fraction estimates, kernel estimation achieves comparable mean-squared error as grid search, with dramatically reduced computation.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"9 1","pages":"5-9"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
MRI parameter quantification has diverse applications, but likelihood-based methods typically require nonconvex optimization due to nonlinear signal models. To avoid expensive grid searches used in prior works, we propose to learn a nonlinear estimator from simulated training examples and (approximate) kernel ridge regression. As proof of concept, we apply kernel-based estimation to quantify six parameters per voxel describing the steady-state magnetization dynamics of two water compartments from simulated data. In relevant regions of fast-relaxing compartmental fraction estimates, kernel estimation achieves comparable mean-squared error as grid search, with dramatically reduced computation.