Distant Supervision for Relation Extraction in The Persian Language using Piecewise Convolutional Neural Networks

Mehrdad Nasser, Majid Asgari, B. Minaei-Bidgoli
{"title":"Distant Supervision for Relation Extraction in The Persian Language using Piecewise Convolutional Neural Networks","authors":"Mehrdad Nasser, Majid Asgari, B. Minaei-Bidgoli","doi":"10.1109/ICWR.2019.8765255","DOIUrl":null,"url":null,"abstract":"In this paper we use distant supervision for the task of relation extraction from a large corpus in the Persian language. There are supervised and unsupervised methods for relation extraction from text. In supervised relation extraction we use hand labeled corpora. This method suffers from domain dependencies and the difficulties of labeling the text. In unsupervised method, we use large corpora without having to label them but relations extracted using this method cannot be used to populate knowledge bases. Distant supervision takes advantage of large corpora without suffering from domain dependencies and can populate knowledge bases. For our experiment we use FarsBase, a knowledge base containing millions of relation instances, and align entities in 630000 Persian Wikipedia articles to these relation instances and create a distantly supervised dataset. We then extract new relation instances using piecewise convolutional neural networks and compare the results with the baseline model that uses manually extracted features.","PeriodicalId":6680,"journal":{"name":"2019 5th International Conference on Web Research (ICWR)","volume":"1 1","pages":"96-99"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Web Research (ICWR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWR.2019.8765255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we use distant supervision for the task of relation extraction from a large corpus in the Persian language. There are supervised and unsupervised methods for relation extraction from text. In supervised relation extraction we use hand labeled corpora. This method suffers from domain dependencies and the difficulties of labeling the text. In unsupervised method, we use large corpora without having to label them but relations extracted using this method cannot be used to populate knowledge bases. Distant supervision takes advantage of large corpora without suffering from domain dependencies and can populate knowledge bases. For our experiment we use FarsBase, a knowledge base containing millions of relation instances, and align entities in 630000 Persian Wikipedia articles to these relation instances and create a distantly supervised dataset. We then extract new relation instances using piecewise convolutional neural networks and compare the results with the baseline model that uses manually extracted features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分段卷积神经网络的波斯语关系抽取的远程监督
在本文中,我们使用远程监督来完成从大型波斯语语料库中抽取关系的任务。从文本中提取关系有监督和非监督两种方法。在监督关系提取中,我们使用手工标记的语料库。这种方法存在领域依赖性和标记文本的困难。在无监督方法中,我们使用大型语料库而无需对其进行标记,但使用该方法提取的关系不能用于填充知识库。远程监督利用了大型语料库,而不会受到领域依赖的影响,并且可以填充知识库。对于我们的实验,我们使用FarsBase,一个包含数百万关系实例的知识库,并将630000篇波斯语维基百科文章中的实体与这些关系实例对齐,并创建一个远程监督数据集。然后,我们使用分段卷积神经网络提取新的关系实例,并将结果与使用手动提取特征的基线模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Anomaly-Based IDS for Detecting Attacks in RPL-Based Internet of Things A Sentiment Aggregation System based on an OWA Operator Using Web Mining in the Analysis of Housing Prices: A Case study of Tehran An Adaptive Machine Learning Based Approach for Phishing Detection Using Hybrid Features Mobility-Aware Parent Selection for Routing Protocol in Wireless Sensor Networks using RPL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1