A high precision global prediction approach based on local prediction approaches

S. Su, Chan-Ben Lin, Yen-Tseng Hsu
{"title":"A high precision global prediction approach based on local prediction approaches","authors":"S. Su, Chan-Ben Lin, Yen-Tseng Hsu","doi":"10.1109/TSMCC.2002.806745","DOIUrl":null,"url":null,"abstract":"Traditional model-free prediction approaches, such as neural networks or fuzzy models use all training data without preference in building their prediction models. Alternately, one may make predictions based only on a set of the most recent data without using other data. Usually, such local prediction schemes may have better performance in predicting time series than global prediction schemes do. However, local prediction schemes only use the most recent information and ignore information bearing on far away data. As a result, the accuracy of local prediction schemes may be limited. In this paper a novel prediction approach, termed the Markov-Fourier gray model (MFGM), is proposed. The approach builds a gray model from a set of the most recent data and a Fourier series is used to fit the residuals produced by this gray model. Then, the Markov matrices are employed to encode possible global information generated also by the residuals. It is evident that MFGM can provide the best performance among existing prediction schemes. Besides, we also implemented a short-term MFGM approach, in which the Markov matrices only recorded information for a period of time instead of all data. The predictions using MFGM again are more accurate than those using short-term MFGM. Thus, it is concluded that the global information encoded in the Markov matrices indeed can provide useful information for predictions.","PeriodicalId":55005,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","volume":"310 1","pages":"416-425"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCC.2002.806745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

Traditional model-free prediction approaches, such as neural networks or fuzzy models use all training data without preference in building their prediction models. Alternately, one may make predictions based only on a set of the most recent data without using other data. Usually, such local prediction schemes may have better performance in predicting time series than global prediction schemes do. However, local prediction schemes only use the most recent information and ignore information bearing on far away data. As a result, the accuracy of local prediction schemes may be limited. In this paper a novel prediction approach, termed the Markov-Fourier gray model (MFGM), is proposed. The approach builds a gray model from a set of the most recent data and a Fourier series is used to fit the residuals produced by this gray model. Then, the Markov matrices are employed to encode possible global information generated also by the residuals. It is evident that MFGM can provide the best performance among existing prediction schemes. Besides, we also implemented a short-term MFGM approach, in which the Markov matrices only recorded information for a period of time instead of all data. The predictions using MFGM again are more accurate than those using short-term MFGM. Thus, it is concluded that the global information encoded in the Markov matrices indeed can provide useful information for predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部预测方法的高精度全局预测方法
传统的无模型预测方法,如神经网络或模糊模型,在构建预测模型时使用所有的训练数据而没有偏好。或者,人们可以只根据一组最新数据而不使用其他数据进行预测。通常,这种局部预测方案在预测时间序列时可能比全局预测方案具有更好的性能。然而,局部预测方案只使用最近的信息,而忽略了与远距离数据有关的信息。因此,局部预报方案的精度可能会受到限制。本文提出了一种新的预测方法——马尔可夫-傅里叶灰色模型(MFGM)。该方法从一组最新的数据中建立一个灰色模型,并使用傅立叶级数来拟合该灰色模型产生的残差。然后,利用马尔可夫矩阵对残差产生的可能的全局信息进行编码。在现有的预测方案中,MFGM的预测效果最好。此外,我们还实现了一种短期的MFGM方法,其中马尔可夫矩阵只记录一段时间的信息而不是所有数据。再次使用MFGM的预测比使用短期MFGM的预测更准确。因此,可以得出结论,编码在马尔可夫矩阵中的全局信息确实可以为预测提供有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
3 months
期刊最新文献
System Architectures Enabling Reconfigurable Laboratory-Automation Systems Neural-Network-Based Path Planning for a Multirobot System With Moving Obstacles A Divide-and-Conquer Strategy to Deadlock Prevention in Flexible Manufacturing Systems Comments on "An Adaptive Multimodal Biometric Management Algorithm" Guest Editorial Foreword to the Special Issue on Intelligent Computation for Bioinformatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1