{"title":"An Empirical Study of Multi-entity Changes in Real Bug Fixes","authors":"Ye Wang, Na Meng, Hao Zhong","doi":"10.1109/ICSME.2018.00038","DOIUrl":null,"url":null,"abstract":"Prior studies showed that developers applied repeated bug fixes—similar or identical code changes—to multiple locations. According to the observation, researchers built tools to automatically generate candidate patches from the repeated bug-fixing patterns. However, all such research focuses on the recurring change patterns within single methods. We are curious whether there are also repeated bug fixes that change multiple program entities (e.g., classes, methods, and fields); and if so, how we can leverage such recurring change patterns to further help developers fix bugs. In this paper, we present a comprehensive empirical study on multi-entity bug fixes in terms of their frequency, composition, and semantic meanings. Specifically for each bug fix, we first used our approach InterPart to perform static inter-procedural analysis on partial programs (i.e., the old and new versions of changed Java files), and to extract change dependency graphs (CDGs)—graphs that connect multiple changed entities based on their syntactic dependencies. By extracting common subgraphs from the CDGs of different fixes, we identified the recurring change patterns. Our study on Aries, Cassandra, Derby, and Mahout shows that (1) 52-58% of bug fixes involved multi-entity changes; (2) 6 recurring change patterns commonly exist in all projects; and (3) 19-210 entity pairs were repetitively co-changed mainly because the pairs invoked the same methods, accessed the same fields, or contained similar content. These results helped us better understand the gap between the fixes generated by existing automatic program repair (APR) approaches and the real fixes. Our observations will shed light on the follow-up research of automatic program comprehension and modification.","PeriodicalId":6572,"journal":{"name":"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"64 1","pages":"287-298"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSME.2018.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Prior studies showed that developers applied repeated bug fixes—similar or identical code changes—to multiple locations. According to the observation, researchers built tools to automatically generate candidate patches from the repeated bug-fixing patterns. However, all such research focuses on the recurring change patterns within single methods. We are curious whether there are also repeated bug fixes that change multiple program entities (e.g., classes, methods, and fields); and if so, how we can leverage such recurring change patterns to further help developers fix bugs. In this paper, we present a comprehensive empirical study on multi-entity bug fixes in terms of their frequency, composition, and semantic meanings. Specifically for each bug fix, we first used our approach InterPart to perform static inter-procedural analysis on partial programs (i.e., the old and new versions of changed Java files), and to extract change dependency graphs (CDGs)—graphs that connect multiple changed entities based on their syntactic dependencies. By extracting common subgraphs from the CDGs of different fixes, we identified the recurring change patterns. Our study on Aries, Cassandra, Derby, and Mahout shows that (1) 52-58% of bug fixes involved multi-entity changes; (2) 6 recurring change patterns commonly exist in all projects; and (3) 19-210 entity pairs were repetitively co-changed mainly because the pairs invoked the same methods, accessed the same fields, or contained similar content. These results helped us better understand the gap between the fixes generated by existing automatic program repair (APR) approaches and the real fixes. Our observations will shed light on the follow-up research of automatic program comprehension and modification.