Automated Risk Assessment for Scene Understanding and Domestic Robots Using RGB-D Data and 2.5D CNNs at a Patch Level

Rob Dupre, Georgios Tzimiropoulos, V. Argyriou
{"title":"Automated Risk Assessment for Scene Understanding and Domestic Robots Using RGB-D Data and 2.5D CNNs at a Patch Level","authors":"Rob Dupre, Georgios Tzimiropoulos, V. Argyriou","doi":"10.1109/CVPRW.2017.65","DOIUrl":null,"url":null,"abstract":"In this work the notion of automated risk assessment for 3D scenes is addressed. Using deep learning techniques smart enabled homes and domestic robots can be equipped with the functionality to detect, draw attention to, or mitigate hazards in a given scene. We extend an existing risk estimation framework that incorporates physics and shape descriptors by introducing a novel CNN architecture allowing risk detection at a patch level. Analysis is conducted on RGB-D data and is performed on a frame by frame basis, requiring no temporal information between frames.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"160 1","pages":"476-477"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work the notion of automated risk assessment for 3D scenes is addressed. Using deep learning techniques smart enabled homes and domestic robots can be equipped with the functionality to detect, draw attention to, or mitigate hazards in a given scene. We extend an existing risk estimation framework that incorporates physics and shape descriptors by introducing a novel CNN architecture allowing risk detection at a patch level. Analysis is conducted on RGB-D data and is performed on a frame by frame basis, requiring no temporal information between frames.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RGB-D数据和2.5D cnn的场景理解和家用机器人自动风险评估
在这项工作中,解决了3D场景自动风险评估的概念。使用深度学习技术,智能家庭和家用机器人可以配备检测、引起注意或减轻给定场景中的危险的功能。我们通过引入一种新颖的CNN架构,扩展了现有的风险估计框架,该框架结合了物理和形状描述符,允许在补丁级别进行风险检测。对RGB-D数据进行分析,并以帧为单位进行分析,帧之间不需要时间信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring Energy Expenditure in Sports by Thermal Video Analysis Court-Based Volleyball Video Summarization Focusing on Rally Scene Generating 5D Light Fields in Scattering Media for Representing 3D Images Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1