Building optimal information systems automatically: configuration space exploration for biomedical information systems

Zi Yang, E. Garduño, Yan Fang, Avner Maiberg, Collin McCormack, Eric Nyberg
{"title":"Building optimal information systems automatically: configuration space exploration for biomedical information systems","authors":"Zi Yang, E. Garduño, Yan Fang, Avner Maiberg, Collin McCormack, Eric Nyberg","doi":"10.1145/2505515.2505692","DOIUrl":null,"url":null,"abstract":"Software frameworks which support integration and scaling of text analysis algorithms make it possible to build complex, high performance information systems for information extraction, information retrieval, and question answering; IBM's Watson is a prominent example. As the complexity and scaling of information systems become ever greater, it is much more challenging to effectively and efficiently determine which toolkits, algorithms, knowledge bases or other resources should be integrated into an information system in order to achieve a desired or optimal level of performance on a given task. This paper presents a formal representation of the space of possible system configurations, given a set of information processing components and their parameters (configuration space) and discusses algorithmic approaches to determine the optimal configuration within a given configuration space (configuration space exploration or CSE). We introduce the CSE framework, an extension to the UIMA framework which provides a general distributed solution for building and exploring configuration spaces for information systems. The CSE framework was used to implement biomedical information systems in case studies involving over a trillion different configuration combinations of components and parameter values operating on question answering tasks from the TREC Genomics. The framework automatically and efficiently evaluated different system configurations, and identified configurations that achieved better results than prior published results.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Software frameworks which support integration and scaling of text analysis algorithms make it possible to build complex, high performance information systems for information extraction, information retrieval, and question answering; IBM's Watson is a prominent example. As the complexity and scaling of information systems become ever greater, it is much more challenging to effectively and efficiently determine which toolkits, algorithms, knowledge bases or other resources should be integrated into an information system in order to achieve a desired or optimal level of performance on a given task. This paper presents a formal representation of the space of possible system configurations, given a set of information processing components and their parameters (configuration space) and discusses algorithmic approaches to determine the optimal configuration within a given configuration space (configuration space exploration or CSE). We introduce the CSE framework, an extension to the UIMA framework which provides a general distributed solution for building and exploring configuration spaces for information systems. The CSE framework was used to implement biomedical information systems in case studies involving over a trillion different configuration combinations of components and parameter values operating on question answering tasks from the TREC Genomics. The framework automatically and efficiently evaluated different system configurations, and identified configurations that achieved better results than prior published results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动构建最优信息系统:生物医学信息系统的配置空间探索
支持文本分析算法集成和扩展的软件框架使构建复杂的高性能信息系统成为可能,用于信息提取、信息检索和问题回答;IBM的沃森就是一个突出的例子。随着信息系统的复杂性和规模变得越来越大,有效和高效地确定哪些工具包、算法、知识库或其他资源应该集成到信息系统中,以便在给定任务上实现期望的或最佳的性能水平,这是一个更大的挑战。在给定一组信息处理组件及其参数(配置空间)的情况下,本文给出了可能的系统配置空间的形式化表示,并讨论了在给定配置空间内确定最佳配置的算法方法(配置空间探索或CSE)。我们介绍CSE框架,它是UIMA框架的扩展,为构建和探索信息系统的配置空间提供了通用的分布式解决方案。CSE框架用于在案例研究中实现生物医学信息系统,涉及超过一万亿种不同的组件配置组合和参数值,这些组件和参数值在TREC Genomics的问答任务上运行。该框架自动有效地评估不同的系统配置,并识别出比先前发布的结果更好的配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring XML data is as easy as using maps Mining-based compression approach of propositional formulae Flexible and dynamic compromises for effective recommendations Efficient parsing-based search over structured data Recommendation via user's personality and social contextual
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1