Bias and consistency in three-way gravity models

Thomas Zylkin, M. Weidner
{"title":"Bias and consistency in three-way gravity models","authors":"Thomas Zylkin, M. Weidner","doi":"10.1920/WP.CEM.2020.120","DOIUrl":null,"url":null,"abstract":"We study the incidental parameter problem in \"three-way\" Poisson Pseudo-Maximum Likelihood (\"PPML\") gravity models recently recommended for identifying the effects of trade policies and in other network panel data settings. Despite the number and variety of fixed effects this model entails, we confirm it is consistent for small $T$ and we show it is in fact the only estimator among a wide range of PML gravity estimators that is generally consistent in this context when $T$ is small. At the same time, asymptotic confidence intervals in fixed-$T$ panels are not correctly centered at the true point estimates, and cluster-robust variance estimates used to construct standard errors are generally biased as well. We characterize each of these biases analytically and show both numerically and empirically that they are salient even for real-data settings with a large number of countries. We also offer practical remedies that can be used to obtain more reliable inferences of the effects of trade policies and other time-varying gravity variables.","PeriodicalId":8448,"journal":{"name":"arXiv: Econometrics","volume":"229 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1920/WP.CEM.2020.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

Abstract

We study the incidental parameter problem in "three-way" Poisson Pseudo-Maximum Likelihood ("PPML") gravity models recently recommended for identifying the effects of trade policies and in other network panel data settings. Despite the number and variety of fixed effects this model entails, we confirm it is consistent for small $T$ and we show it is in fact the only estimator among a wide range of PML gravity estimators that is generally consistent in this context when $T$ is small. At the same time, asymptotic confidence intervals in fixed-$T$ panels are not correctly centered at the true point estimates, and cluster-robust variance estimates used to construct standard errors are generally biased as well. We characterize each of these biases analytically and show both numerically and empirically that they are salient even for real-data settings with a large number of countries. We also offer practical remedies that can be used to obtain more reliable inferences of the effects of trade policies and other time-varying gravity variables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三向重力模型的偏差和一致性
我们研究了最近被推荐用于识别贸易政策影响和其他网络面板数据设置的“三向”泊松伪极大似然(“PPML”)重力模型中的附带参数问题。尽管该模型需要固定效应的数量和种类,但我们确认它对于小$T$是一致的,并且我们表明它实际上是在广泛的PML重力估计量中唯一的估计量,当$T$很小时,在这种情况下通常是一致的。同时,固定$T$面板中的渐近置信区间没有正确地集中在真实点估计上,用于构建标准误差的聚类稳健方差估计通常也有偏差。我们分析了这些偏差的特征,并在数字和经验上表明,即使对于大量国家的真实数据设置,它们也是显著的。我们还提供了切实可行的补救措施,可用于对贸易政策和其他随时间变化的重力变量的影响进行更可靠的推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Macroeconomic Variations after Covid-19 Estimation and Inference by Stochastic Optimization: Three Examples Testable implications of multiple equilibria in discrete games with correlated types Gaussian transforms modeling and the estimation of distributional regression functions Simple misspecification adaptive inference for interval identified parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1