{"title":"Making radiation therapy more effective in the era of precision medicine","authors":"Xingchen Peng, Zhi-Gong Wei, L. Gerweck","doi":"10.1093/pcmedi/pbaa038","DOIUrl":null,"url":null,"abstract":"Abstract Cancer has become a leading cause of death and constitutes an enormous burden worldwide. Radiation is a principle treatment modality used alone or in combination with other forms of therapy, with 50%–70% of cancer patients receiving radiotherapy at some point during their illness. It has been suggested that traditional radiotherapy (daily fractions of approximately 1.8–2 Gy over several weeks) might select for radioresistant tumor cell sub-populations, which, if not sterilized, give rise to local treatment failure and distant metastases. Thus, the challenge is to develop treatment strategies and schedules to eradicate the resistant subpopulation of tumorigenic cells rather than the predominant sensitive tumor cell population. With continued technological advances including enhanced conformal treatment technology, radiation oncologists can increasingly maximize the dose to tumors while sparing adjacent normal tissues, to limit toxicity and damage to the latter. Increased dose conformality also facilitates changes in treatment schedules, such as changes in dose per treatment fraction and number of treatment fractions, to enhance the therapeutic ratio. For example, the recently developed large dose per fraction treatment schedules (hypofractionation) have shown clinical advantage over conventional treatment schedules in some tumor types. Experimental studies suggest that following large acute doses of radiation, recurrent tumors, presumably sustained by the most resistant tumor cell populations, may in fact be equally or more radiation sensitive than the primary tumor. In this review, we summarize the related advances in radiotherapy, including the increasing understanding of the molecular mechanisms of radioresistance, and the targeting of these mechanisms with potent small molecule inhibitors, which may selectively sensitize tumor cells to radiation.","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":"1 1","pages":"272 - 283"},"PeriodicalIF":5.1000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbaa038","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Cancer has become a leading cause of death and constitutes an enormous burden worldwide. Radiation is a principle treatment modality used alone or in combination with other forms of therapy, with 50%–70% of cancer patients receiving radiotherapy at some point during their illness. It has been suggested that traditional radiotherapy (daily fractions of approximately 1.8–2 Gy over several weeks) might select for radioresistant tumor cell sub-populations, which, if not sterilized, give rise to local treatment failure and distant metastases. Thus, the challenge is to develop treatment strategies and schedules to eradicate the resistant subpopulation of tumorigenic cells rather than the predominant sensitive tumor cell population. With continued technological advances including enhanced conformal treatment technology, radiation oncologists can increasingly maximize the dose to tumors while sparing adjacent normal tissues, to limit toxicity and damage to the latter. Increased dose conformality also facilitates changes in treatment schedules, such as changes in dose per treatment fraction and number of treatment fractions, to enhance the therapeutic ratio. For example, the recently developed large dose per fraction treatment schedules (hypofractionation) have shown clinical advantage over conventional treatment schedules in some tumor types. Experimental studies suggest that following large acute doses of radiation, recurrent tumors, presumably sustained by the most resistant tumor cell populations, may in fact be equally or more radiation sensitive than the primary tumor. In this review, we summarize the related advances in radiotherapy, including the increasing understanding of the molecular mechanisms of radioresistance, and the targeting of these mechanisms with potent small molecule inhibitors, which may selectively sensitize tumor cells to radiation.
期刊介绍:
Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.