{"title":"MIDeA: a multi-parallel intrusion detection architecture","authors":"G. Vasiliadis, M. Polychronakis, S. Ioannidis","doi":"10.1145/2046707.2046741","DOIUrl":null,"url":null,"abstract":"Network intrusion detection systems are faced with the challenge of identifying diverse attacks, in extremely high speed networks. For this reason, they must operate at multi-Gigabit speeds, while performing highly-complex per-packet and per-flow data processing. In this paper, we present a multi-parallel intrusion detection architecture tailored for high speed networks. To cope with the increased processing throughput requirements, our system parallelizes network traffic processing and analysis at three levels, using multi-queue NICs, multiple CPUs, and multiple GPUs. The proposed design avoids locking, optimizes data transfers between the different processing units, and speeds up data processing by mapping different operations to the processing units where they are best suited. Our experimental evaluation shows that our prototype implementation based on commodity off-the-shelf equipment can reach processing speeds of up to 5.2 Gbit/s with zero packet loss when analyzing traffic in a real network, whereas the pattern matching engine alone reaches speeds of up to 70 Gbit/s, which is an almost four times improvement over prior solutions that use specialized hardware.","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":"20 1","pages":"297-308"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"154","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2046707.2046741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 154

Abstract

Network intrusion detection systems are faced with the challenge of identifying diverse attacks, in extremely high speed networks. For this reason, they must operate at multi-Gigabit speeds, while performing highly-complex per-packet and per-flow data processing. In this paper, we present a multi-parallel intrusion detection architecture tailored for high speed networks. To cope with the increased processing throughput requirements, our system parallelizes network traffic processing and analysis at three levels, using multi-queue NICs, multiple CPUs, and multiple GPUs. The proposed design avoids locking, optimizes data transfers between the different processing units, and speeds up data processing by mapping different operations to the processing units where they are best suited. Our experimental evaluation shows that our prototype implementation based on commodity off-the-shelf equipment can reach processing speeds of up to 5.2 Gbit/s with zero packet loss when analyzing traffic in a real network, whereas the pattern matching engine alone reaches speeds of up to 70 Gbit/s, which is an almost four times improvement over prior solutions that use specialized hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MIDeA:多并行入侵检测架构
在高速网络环境下,网络入侵检测系统面临着识别各种攻击的挑战。因此,它们必须以千兆位的速度运行,同时执行高度复杂的逐包和逐流数据处理。本文提出了一种适合高速网络的多并行入侵检测体系结构。为了应对不断增加的处理吞吐量需求,我们的系统在三个级别上并行处理网络流量处理和分析,使用多队列网卡、多个cpu和多个gpu。提出的设计避免了锁定,优化了不同处理单元之间的数据传输,并通过将不同的操作映射到最适合的处理单元来加快数据处理速度。我们的实验评估表明,在分析真实网络中的流量时,我们基于商品现货设备的原型实现可以达到高达5.2 Gbit/s的处理速度,并且没有丢包,而模式匹配引擎单独达到高达70 Gbit/s的速度,这比使用专用硬件的先前解决方案提高了近四倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
期刊最新文献
The Danger of Minimum Exposures: Understanding Cross-App Information Leaks on iOS through Multi-Side-Channel Learning. WristPrint: Characterizing User Re-identification Risks from Wrist-worn Accelerometry Data. CCS '21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021 WAHC '21: Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography, Virtual Event, Korea, 15 November 2021 Incremental Learning Algorithm of Data Complexity Based on KNN Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1