{"title":"Experimental Evaluation of Window-Type Air-Conditioning Unit with New Expansion Device and R404A Alternative Refrigerant","authors":"A. Al-Sayyab","doi":"10.1142/s2010132520500315","DOIUrl":null,"url":null,"abstract":"In this study, the performance of a window-type air-conditioning unit with an alternative, ozone-friendly refrigerant was enhanced by incorporating a nozzle instead of a capillary tube as an expansion device. An experimental evaluation was adopted on a 1.5 RT window-type air-conditioning unit with a controlled environmental zone. According to operating conditions, an ANSYS-Fluent program was used to predict an appropriate nozzle size for a lower pressure ratio. The refrigeration cycle model was simulated using the Engineering Equation Solver (EES).27 The results showed that using a nozzle of 30[Formula: see text]mm length and inner and outer diameters of 9 and 2[Formula: see text]mm, respectively instead of the capillary tube with R404A reduces compressor power consumption by 7.7% and increases the coefficient of performance (COP) by 7.4%.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":"601 1","pages":"2050031"},"PeriodicalIF":0.8000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Air-conditioning and Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010132520500315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 2
Abstract
In this study, the performance of a window-type air-conditioning unit with an alternative, ozone-friendly refrigerant was enhanced by incorporating a nozzle instead of a capillary tube as an expansion device. An experimental evaluation was adopted on a 1.5 RT window-type air-conditioning unit with a controlled environmental zone. According to operating conditions, an ANSYS-Fluent program was used to predict an appropriate nozzle size for a lower pressure ratio. The refrigeration cycle model was simulated using the Engineering Equation Solver (EES).27 The results showed that using a nozzle of 30[Formula: see text]mm length and inner and outer diameters of 9 and 2[Formula: see text]mm, respectively instead of the capillary tube with R404A reduces compressor power consumption by 7.7% and increases the coefficient of performance (COP) by 7.4%.
期刊介绍:
As the only international journal in the field of air-conditioning and refrigeration in Asia, IJACR reports researches on the equipments for controlling indoor environment and cooling/refrigeration. It includes broad range of applications and underlying theories including fluid dynamics, thermodynamics, heat transfer, and nano/bio-related technologies. In addition, it covers future energy technologies, such as fuel cell, wind turbine, solar cell/heat, geothermal energy and etc.