K. Feltz, L. MacFadden, Samuel D. Gieg, C. Lough, W. Bezold, N. Skelley
{"title":"Mechanical properties of 3D-printed orthopedic one-third tubular plates and cortical screws","authors":"K. Feltz, L. MacFadden, Samuel D. Gieg, C. Lough, W. Bezold, N. Skelley","doi":"10.2217/3dp-2022-0007","DOIUrl":null,"url":null,"abstract":"Aim: 3D printing is a growing technology with promising applications in orthopedic surgery. However, the utilization of 3D-printed surgical implants has not been fully explored. Materials & methods: One-third tubular plates and cortical screws were printed via fused deposition modeling using four materials: acrylonitrile butadiene styrene, carbon fiber-reinforced polylactic acid, polycarbonate and polyether ether ketone. Plates were analyzed with three-point bending and torque testing, and screws underwent torque, shear and pullout testing. Results: Two-factor Analysis of Variance (ANOVA) demonstrated several significant differences between mechanical profiles for different materials and between designs. Conclusion: The results demonstrate that desktop 3D printers can print biocompatible materials to replicate surgical implant designs at a low cost. However, current materials and structures do not approximate the properties of stainless-steel implants.","PeriodicalId":73578,"journal":{"name":"Journal of 3D printing in medicine","volume":"366 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of 3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/3dp-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Aim: 3D printing is a growing technology with promising applications in orthopedic surgery. However, the utilization of 3D-printed surgical implants has not been fully explored. Materials & methods: One-third tubular plates and cortical screws were printed via fused deposition modeling using four materials: acrylonitrile butadiene styrene, carbon fiber-reinforced polylactic acid, polycarbonate and polyether ether ketone. Plates were analyzed with three-point bending and torque testing, and screws underwent torque, shear and pullout testing. Results: Two-factor Analysis of Variance (ANOVA) demonstrated several significant differences between mechanical profiles for different materials and between designs. Conclusion: The results demonstrate that desktop 3D printers can print biocompatible materials to replicate surgical implant designs at a low cost. However, current materials and structures do not approximate the properties of stainless-steel implants.