{"title":"Linearization-Discretization process to solve systems of nonlinear Fredholm integral equations in an infinite-dimensional context","authors":"Ilyes Sedka, S. Lemita, M. Aissaoui","doi":"10.31197/atnaa.998275","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a different way for solving systems of nonlinear Fredholm integral equations of the second kind. We construct our new strategy in two steps, through beginning with the linearization phase of the system of Fredholm integral equations by applying Newton method, then we pass to the discretization phase for some involved integral operator using Nystr\\\"{o}m method. The convergence analysis of our new method is proved under some necessary conditions. At last, a numerical application to approach a nonlinear Fredholm integro-differential equation by using this new process is taken to confirm its advantage.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.998275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a different way for solving systems of nonlinear Fredholm integral equations of the second kind. We construct our new strategy in two steps, through beginning with the linearization phase of the system of Fredholm integral equations by applying Newton method, then we pass to the discretization phase for some involved integral operator using Nystr\"{o}m method. The convergence analysis of our new method is proved under some necessary conditions. At last, a numerical application to approach a nonlinear Fredholm integro-differential equation by using this new process is taken to confirm its advantage.