The Additive Manufacturing Process of Electric Power Fittings Fabricated by Metal Droplet Deposition

Haihua Wu, Guangxi Zhao, Zhengying Wei
{"title":"The Additive Manufacturing Process of Electric Power Fittings Fabricated by Metal Droplet Deposition","authors":"Haihua Wu, Guangxi Zhao, Zhengying Wei","doi":"10.33142/ME.V1I1.658","DOIUrl":null,"url":null,"abstract":"Metal droplet deposition is a kind of additive manufacturing (3D Printing) technique that fabricates near-net part through droplets deposition with lower cost and higher efficiency. This paper proposed a solution to problems of electric power fittings that large inventories, high procurement costs, low manufacturing efficiency and transportation cost. Using additive Manufacturing technique - metal droplet deposition, electric power fittings fabricated on power construction site. This paper describes the manufacturing process of typical thin-walled samples (the structure optimized based on additive manufacturing principle) and ball head rings of electric power fittings. Aiming at the integral AM forming for ball and ball socket electric power fitting workpiece, a novel easy removal forming support material (ceramics and gypsum mixed with UV cured resin) have been developed. Here this support material was used to fabricate nested integral workpieces. Dimensional accuracy and microstructure of the test pieces were analyzed. The error of the height and width of the forming workpiece is within 5%. No obvious overlap trace (such as overlap line and cracks) observed, and the internal microstructure is equiaxial crystal. The average density of the component is 99.51%, which measured by drainage method and 13.39% higher than the cast raw material.","PeriodicalId":16315,"journal":{"name":"Journal of Mechanical Engineering Science and Technology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33142/ME.V1I1.658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metal droplet deposition is a kind of additive manufacturing (3D Printing) technique that fabricates near-net part through droplets deposition with lower cost and higher efficiency. This paper proposed a solution to problems of electric power fittings that large inventories, high procurement costs, low manufacturing efficiency and transportation cost. Using additive Manufacturing technique - metal droplet deposition, electric power fittings fabricated on power construction site. This paper describes the manufacturing process of typical thin-walled samples (the structure optimized based on additive manufacturing principle) and ball head rings of electric power fittings. Aiming at the integral AM forming for ball and ball socket electric power fitting workpiece, a novel easy removal forming support material (ceramics and gypsum mixed with UV cured resin) have been developed. Here this support material was used to fabricate nested integral workpieces. Dimensional accuracy and microstructure of the test pieces were analyzed. The error of the height and width of the forming workpiece is within 5%. No obvious overlap trace (such as overlap line and cracks) observed, and the internal microstructure is equiaxial crystal. The average density of the component is 99.51%, which measured by drainage method and 13.39% higher than the cast raw material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属液滴沉积增材制造电力配件的工艺研究
金属液滴沉积是一种增材制造(3D打印)技术,通过液滴沉积制造近净零件,具有成本低、效率高的优点。针对电力配件库存大、采购成本高、制造效率低、运输成本高等问题,提出了一种解决方案。采用增材制造技术——金属液滴沉积技术,在电力施工现场制造电力配件。介绍了典型薄壁样品(基于增材制造原理优化的结构)和电力配件球头环的制造工艺。针对球型和球插座型电动配件整体增材制造的特点,研制了一种新型易拆卸的成型支撑材料(陶瓷和石膏混合UV固化树脂)。在这里,这种支撑材料被用来制造嵌套的整体工件。对试件的尺寸精度和显微组织进行了分析。成形工件的高度和宽度误差在5%以内。未观察到明显的重叠痕迹(如重叠线和裂纹),内部组织为等轴晶。该组分的平均密度为99.51%,比浇注原料的平均密度高13.39%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
24 weeks
期刊最新文献
THE EFFECT OF TIME VARIATION ON CORROSION BEHAVIOR ASTM A36 IN SWAMP WATER FROM THE VILLAGE OF RAMBUTAN SOUTH SUMATRA PROVINCE, INDONESIA ANALYSIS AND MODELING OF WEIGHBRIDGE CONSTRUCTION REINFORCEMENT AT PT BUKIT ASAM FEASIBILITY OF 12 W SOLAR POWER PLANT FOR STREET LIGHTING IN RURAL AREA THE EFFECT OF TIME VARIATION ON CORROSION BEHAVIOUR OF ASTM A36 IN SEAWATER FROM WEST BANGKA OF BANGKA BELITUNG ISLANDS, INDONESIA SUMMARY OF AUTOMATION, PRODUCTION SYSTEMS, AND COMPUTER-INTEGRATED MANUFACTURING FOURTH EDITION BY MIKELL P. GROOVER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1