{"title":"Extracting API Tips from Developer Question and Answer Websites","authors":"Shaohua Wang, Nhathai Phan, Yan Wang, Yong Zhao","doi":"10.1109/MSR.2019.00058","DOIUrl":null,"url":null,"abstract":"The success of question and answer (Q&A) websites attracts massive user-generated content for using and learning APIs, which easily leads to information overload: many questions for APIs have a large number of answers containing useful and irrelevant information, and cannot all be consumed by developers. In this work, we develop DeepTip, a novel deep learning-based approach using different Convolutional Neural Network architectures, to extract short practical and useful tips from developer answers. Our extensive empirical experiments prove that DeepTip can extract useful tips from a large corpus of answers to questions with high precision (i.e., avg. 0.854) and coverage (i.e., 0.94), and it outperforms two state-of-the-art baselines by up to 56.7% and 162%, respectively, in terms of Precision. Furthermore, qualitatively, a user study is conducted with real Stack Overflow users and its results confirm that tip extraction is useful and our approach generates high-quality tips.","PeriodicalId":6706,"journal":{"name":"2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)","volume":"1 1","pages":"321-332"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSR.2019.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
The success of question and answer (Q&A) websites attracts massive user-generated content for using and learning APIs, which easily leads to information overload: many questions for APIs have a large number of answers containing useful and irrelevant information, and cannot all be consumed by developers. In this work, we develop DeepTip, a novel deep learning-based approach using different Convolutional Neural Network architectures, to extract short practical and useful tips from developer answers. Our extensive empirical experiments prove that DeepTip can extract useful tips from a large corpus of answers to questions with high precision (i.e., avg. 0.854) and coverage (i.e., 0.94), and it outperforms two state-of-the-art baselines by up to 56.7% and 162%, respectively, in terms of Precision. Furthermore, qualitatively, a user study is conducted with real Stack Overflow users and its results confirm that tip extraction is useful and our approach generates high-quality tips.