{"title":"The Green route of Silver nanotechnology: Phytosynthesis and applications","authors":"H. Ahmad, K. Rajagopal, A. Shah","doi":"10.7508/IJND.2016.02.001","DOIUrl":null,"url":null,"abstract":"A BS TR AC T: Silver nanoparticles (AgNPs) are amongst the most investigated materials in nanotechnology in view of their unique physio-chemical features and and applications in restorative science. Their progressive usage in different fields of science and some predominant restrictions with conventional methods for their synthesis have demanded analysts to discover green courses for their creation. Biological methods are the preferred to combat with the issues concerned with the nanoparticle synthesis. Within this decade, thousands of plants have been screened to analyze the final impact on characterization and morphology of AgNPs compared to general modes of their synthesis. Phytosynthetic method is an eco-friendly route that can lead to an advanced production of silver nanoparticles with controlled morphology. We herein reviewed the present aspects of phytosynthesis of AgNPs and their importance in modern science. Moreover, overviews of proposed mechanisms in this technology have also been included, which ultimately provide some insights of their safe use and demand for further research.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/IJND.2016.02.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 12
Abstract
A BS TR AC T: Silver nanoparticles (AgNPs) are amongst the most investigated materials in nanotechnology in view of their unique physio-chemical features and and applications in restorative science. Their progressive usage in different fields of science and some predominant restrictions with conventional methods for their synthesis have demanded analysts to discover green courses for their creation. Biological methods are the preferred to combat with the issues concerned with the nanoparticle synthesis. Within this decade, thousands of plants have been screened to analyze the final impact on characterization and morphology of AgNPs compared to general modes of their synthesis. Phytosynthetic method is an eco-friendly route that can lead to an advanced production of silver nanoparticles with controlled morphology. We herein reviewed the present aspects of phytosynthesis of AgNPs and their importance in modern science. Moreover, overviews of proposed mechanisms in this technology have also been included, which ultimately provide some insights of their safe use and demand for further research.