Efficient Query Processing on Many-core Architectures: A Case Study with Intel Xeon Phi Processor

Xuntao Cheng, Bingsheng He, Mian Lu, C. Lau, Huynh Phung Huynh, R. Goh
{"title":"Efficient Query Processing on Many-core Architectures: A Case Study with Intel Xeon Phi Processor","authors":"Xuntao Cheng, Bingsheng He, Mian Lu, C. Lau, Huynh Phung Huynh, R. Goh","doi":"10.1145/2882903.2899407","DOIUrl":null,"url":null,"abstract":"Recently, Intel Xeon Phi is emerging as a many-core processor with up to 61 x86 cores. In this demonstration, we present PhiDB, an OLAP query processor with simultaneous multi-threading (SMT) capabilities on Xeon Phi as a case study for parallel database performance on future many-core processors. With the trend towards many-core architectures, query operator optimizations, and efficient query scheduling on such many-core architectures remain as challenging issues. This motivates us to redesign and evaluate query processors. In PhiDB, we apply Xeon Phi aware optimizations on query operators to exploit hardware features of Xeon Phi, and design a heuristic algorithm to schedule the concurrent execution of query operators for better performance, to demonstrate the performance impact of Xeon Phi aware optimizations. We have also developed a user interface for users to explore the underlying performance impacts of hardware-conscious optimizations and scheduling plans.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2899407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Recently, Intel Xeon Phi is emerging as a many-core processor with up to 61 x86 cores. In this demonstration, we present PhiDB, an OLAP query processor with simultaneous multi-threading (SMT) capabilities on Xeon Phi as a case study for parallel database performance on future many-core processors. With the trend towards many-core architectures, query operator optimizations, and efficient query scheduling on such many-core architectures remain as challenging issues. This motivates us to redesign and evaluate query processors. In PhiDB, we apply Xeon Phi aware optimizations on query operators to exploit hardware features of Xeon Phi, and design a heuristic algorithm to schedule the concurrent execution of query operators for better performance, to demonstrate the performance impact of Xeon Phi aware optimizations. We have also developed a user interface for users to explore the underlying performance impacts of hardware-conscious optimizations and scheduling plans.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多核架构上的高效查询处理:基于Intel Xeon Phi处理器的案例研究
最近,Intel Xeon Phi成为了一款多核处理器,拥有多达61个x86内核。在本演示中,我们将介绍PhiDB,这是Xeon Phi上具有同步多线程(SMT)功能的OLAP查询处理器,作为未来多核处理器上并行数据库性能的案例研究。随着多核体系结构的发展,查询操作符的优化和多核体系结构上的高效查询调度仍然是具有挑战性的问题。这促使我们重新设计和评估查询处理器。在PhiDB中,我们在查询运算符上应用Xeon Phi感知优化,利用Xeon Phi的硬件特性,并设计了一个启发式算法来调度查询运算符的并发执行,以获得更好的性能,以演示Xeon Phi感知优化对性能的影响。我们还为用户开发了一个用户界面,使用户可以探索基于硬件的优化和调度计划的潜在性能影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory Rheem: Enabling Multi-Platform Task Execution Wander Join: Online Aggregation for Joins Graph Summarization for Geo-correlated Trends Detection in Social Networks Emma in Action: Declarative Dataflows for Scalable Data Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1