Functional module extraction by ensembling the ensembles of selective module detectors

Monica Jha, P. Guzzi, P. Veltri, Swarup Roy
{"title":"Functional module extraction by ensembling the ensembles of selective module detectors","authors":"Monica Jha, P. Guzzi, P. Veltri, Swarup Roy","doi":"10.1504/ijcbdd.2019.10025247","DOIUrl":null,"url":null,"abstract":"A group of functionally related genes constitutes a functional module taking part in similar biological activities. Such modules can be employed for the interpretation of biological and cellular processes or their involvement in associated diseases. Detection of such modules from gene expression data is a difficult task, but important from system biology point of view. Different module detectors have been proposed for a few decades with their relative merits and demerits. They can be broadly classified as Clustering, Bi-Clustering and Network based. In this work, we try to combine the merits of some of the selective module detectors picked from three types of module detectors. We perform a two-level ensemble by unifying the goodness of different module detectors. For our experimentation, we use RNAseq read counts as a measure of gene expression. We compare ensemble outcomes with state-of-the-art module detectors and observe a superior performance in comparison to them.","PeriodicalId":13612,"journal":{"name":"Int. J. Comput. Biol. Drug Des.","volume":"53 1","pages":"345-361"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Biol. Drug Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcbdd.2019.10025247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A group of functionally related genes constitutes a functional module taking part in similar biological activities. Such modules can be employed for the interpretation of biological and cellular processes or their involvement in associated diseases. Detection of such modules from gene expression data is a difficult task, but important from system biology point of view. Different module detectors have been proposed for a few decades with their relative merits and demerits. They can be broadly classified as Clustering, Bi-Clustering and Network based. In this work, we try to combine the merits of some of the selective module detectors picked from three types of module detectors. We perform a two-level ensemble by unifying the goodness of different module detectors. For our experimentation, we use RNAseq read counts as a measure of gene expression. We compare ensemble outcomes with state-of-the-art module detectors and observe a superior performance in comparison to them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过集成选择性模块检测器的集成提取功能模块
一组功能相关的基因组成一个功能模块,参与相似的生物活动。这些模块可用于解释生物和细胞过程或它们与相关疾病的关系。从基因表达数据中检测这些模块是一项艰巨的任务,但从系统生物学的角度来看是重要的。几十年来,人们提出了不同的模块探测器,各有优缺点。它们大致可分为聚类、双聚类和基于网络的聚类。在这项工作中,我们试图结合从三种类型的模块检测器中选择的一些选择性模块检测器的优点。通过统一不同模块检测器的优点,实现了两级集成。在我们的实验中,我们使用RNAseq读取计数作为基因表达的测量。我们将集成结果与最先进的模块检测器进行比较,并观察到与它们相比具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Random forest with SMOTE and ensemble feature selection for cervical cancer diagnosis A review on speech organ diseases and cancer detection using artificial intelligence In silico phytochemical repurposing of natural molecules as entry inhibitors against RBD of the spike protein of SARS-CoV-2 using molecular docking studies Generation of 2D-QSAR and pharmacophore models for fishing better anti-leishmanial therapeutics Computational identification of personal genetic variants in an identical twin sisters' family
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1