The Weighted Values of Solar Evaporation’s Environment Factors Obtained by Machine Learning

Yunpeng Wang, Guilong Peng, S. Sharshir, A. W. Kandeal, Nuo Yang
{"title":"The Weighted Values of Solar Evaporation’s Environment Factors Obtained by Machine Learning","authors":"Yunpeng Wang, Guilong Peng, S. Sharshir, A. W. Kandeal, Nuo Yang","doi":"10.30919/ESMM5F436","DOIUrl":null,"url":null,"abstract":"Enhancing the efficiency of solar evaporation is important for solar stills. In this study, the weighted values of environment factors (descriptors) on the efficiency of solar evaporation are obtained by using a machine learning algorithm, random forest. To verify the advancement between random forest and mathematical data analysis, two traditional methods, pair wise plots and Pearson correlation analysis, are conducted for comparison. Experimental data are obtained from around 100 articles since 2014. The results indicated that traditional methods failed at obtaining reasonable weighted values, while random forest is competent. It is found that thermal design is the most significant descriptors to obtain a high efficiency. The lack of complete dataset is the main challenge for more in-depth and comprehensive analysis. This work may promote the studies on solar evaporation and solar stills.","PeriodicalId":11851,"journal":{"name":"ES Materials & Manufacturing","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ES Materials & Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30919/ESMM5F436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Enhancing the efficiency of solar evaporation is important for solar stills. In this study, the weighted values of environment factors (descriptors) on the efficiency of solar evaporation are obtained by using a machine learning algorithm, random forest. To verify the advancement between random forest and mathematical data analysis, two traditional methods, pair wise plots and Pearson correlation analysis, are conducted for comparison. Experimental data are obtained from around 100 articles since 2014. The results indicated that traditional methods failed at obtaining reasonable weighted values, while random forest is competent. It is found that thermal design is the most significant descriptors to obtain a high efficiency. The lack of complete dataset is the main challenge for more in-depth and comprehensive analysis. This work may promote the studies on solar evaporation and solar stills.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的太阳蒸发环境因子加权值
提高太阳能蒸发效率是太阳能蒸馏器的重要组成部分。在本研究中,环境因子(描述符)对太阳能蒸发效率的加权值通过机器学习算法随机森林得到。为了验证随机森林与数学数据分析的先进性,我们采用了两种传统的方法——成对图和Pearson相关分析来进行比较。实验数据来自2014年以来的约100篇文章。结果表明,传统方法无法获得合理的权重值,而随机森林方法是可行的。研究发现,热设计是获得高效率的最重要的描述符。缺乏完整的数据集是进行更深入和全面分析的主要挑战。该工作对太阳能蒸发和太阳能蒸馏器的研究具有一定的推动作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing the Feasibility of Utilizing a Method for Processing Oxidized Zinc Ores Local Natural Graphite as a Promising Raw Material for the Production of Thermally Reduced Graphene-Like Films Core-Shell Structured Polyaniline (PANI) – Manganese Dioxide (MnO2) Nanocomposites as an Electrochemical Sensor for Detection of Emamectin Benzoate Enhanced Oil Recovery: Techniques, Strategies, and Advances Influence of Process Parameters on Surface Crack Density in Electrical Discharge Machining of Ni35Ti35Zr15Cu10Sn5 high-temperature high entropy shape memory alloy by Response Surface Methodology Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1