Prediction of Deflection Behavior of NSM Strengthened Reinforced Concrete Beam Using Fuzzy Logic

K. M. Darain, M. A. Hossain, M. Z. Jumaat, M. Arifuzzaman
{"title":"Prediction of Deflection Behavior of NSM Strengthened Reinforced Concrete Beam Using Fuzzy Logic","authors":"K. M. Darain, M. A. Hossain, M. Z. Jumaat, M. Arifuzzaman","doi":"10.2478/sspjce-2022-0008","DOIUrl":null,"url":null,"abstract":"Abstract This paper aims to present a deflection prediction model of Near Surface Mounted (NSM) Reinforce Concrete (RC) beams using the Fuzzy Logic Expert System (FLES) with different types of membership functions (MF). The absence of a complete theoretical deflection prediction model of NSM-strengthened RC beams persuades this research to develop an Artificial Intelligence (AI) based prediction model using FLES. The proposed model uses triangular and trapezoidal MF to predict the deflection behavior of six NSM-strengthened RC beams. The research variables are strengthening materials and NSM bar length. In this study, two inputs (applied load and variable length) were used to predict two outputs (deflection of two types of strengthened RC beams). The relative error of predicted values was within 5% and the suitability of fit was close to 1.0 which affirms the efficacy of the FLES. Besides, a tiny difference was detected using triangular and trapezoidal MF for the prediction model.","PeriodicalId":30755,"journal":{"name":"Selected Scientific Papers Journal of Civil Engineering","volume":"22 1 1","pages":"1 - 10"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selected Scientific Papers Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sspjce-2022-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper aims to present a deflection prediction model of Near Surface Mounted (NSM) Reinforce Concrete (RC) beams using the Fuzzy Logic Expert System (FLES) with different types of membership functions (MF). The absence of a complete theoretical deflection prediction model of NSM-strengthened RC beams persuades this research to develop an Artificial Intelligence (AI) based prediction model using FLES. The proposed model uses triangular and trapezoidal MF to predict the deflection behavior of six NSM-strengthened RC beams. The research variables are strengthening materials and NSM bar length. In this study, two inputs (applied load and variable length) were used to predict two outputs (deflection of two types of strengthened RC beams). The relative error of predicted values was within 5% and the suitability of fit was close to 1.0 which affirms the efficacy of the FLES. Besides, a tiny difference was detected using triangular and trapezoidal MF for the prediction model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊逻辑的NSM钢筋混凝土梁挠曲性能预测
摘要本文旨在利用模糊逻辑专家系统(les)建立具有不同隶属函数类型的近表面安装钢筋混凝土(RC)梁挠度预测模型。由于缺乏完整的钢筋混凝土混凝土梁挠度理论预测模型,本研究基于人工智能(Artificial Intelligence, AI)开发了一种基于人工智能(les)的预测模型。该模型采用三角形和梯形中频预测了6根混凝土混凝土梁的挠度行为。研究变量为强化材料和NSM杆长。在这项研究中,两个输入(外加荷载和变长度)被用来预测两个输出(两种类型的钢筋混凝土梁的挠度)。预测值的相对误差在5%以内,拟合适宜度接近1.0,证实了该方法的有效性。此外,三角形和梯形MF预测模型的差异很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
27 weeks
期刊最新文献
Fly Ash PLTU Sumber Alam Sekurau Kalimantan Utara sebagai Binder Beton Geopolimer Analisis Kinerja Ruas Jalan Terhadap U-Turn di Kota Pekanbaru PASIR LAUT KOTA TARAKAN SEBAGAI BAHAN STABILISASI TANAH LUNAK EVALUASI KINERJA TERMINAL PENUMPANG ANGKUTAN LAUT DI PELABUHAN TENGKAYU I KOTA TARAKAN KOMPARASI BAJA KONVENSIONAL DAN BAJA KOMPOSIT SANDWICH PANEL SEBAGAI MATERIAL PELAT LANTAI JEMBATAN PENYEBERANGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1