{"title":"Equivalent Beam Model and Improved Structure Design of Large Space Antenna Truss with Geometric Nonlinearity","authors":"Jiang Shi, Cai Guo-Ping","doi":"10.1115/1.4057043","DOIUrl":null,"url":null,"abstract":"\n This paper proposes a extend linear equivalent method that can extend the linear equivalent micropolar beam model to the nonlinear equivalent micropolar beam model to analyze nonlinear vibration for large space truss structure, and also proposes a lattice enhancement method to improve the cantilever truss for the buckling problem that exists in space cantilever truss structures. The nonlinear equivalent model is obtained by introducing a co-rotating coordinate system into the linear equivalent beam model. Since the instability of the fixed root end of the cantilever truss is the main reason for buckling, the method of strengthening the longeron of the truss lattice by lattice is proposed. The accuracy of the equivalent geometric nonlinear model and the effectiveness of the improved cantilever truss structure are verified by four numerical simulation examples. The methods proposed in this paper provide some reference for studying the dynamics analysis of large space trusses and the design of structures.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"240 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4057043","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes a extend linear equivalent method that can extend the linear equivalent micropolar beam model to the nonlinear equivalent micropolar beam model to analyze nonlinear vibration for large space truss structure, and also proposes a lattice enhancement method to improve the cantilever truss for the buckling problem that exists in space cantilever truss structures. The nonlinear equivalent model is obtained by introducing a co-rotating coordinate system into the linear equivalent beam model. Since the instability of the fixed root end of the cantilever truss is the main reason for buckling, the method of strengthening the longeron of the truss lattice by lattice is proposed. The accuracy of the equivalent geometric nonlinear model and the effectiveness of the improved cantilever truss structure are verified by four numerical simulation examples. The methods proposed in this paper provide some reference for studying the dynamics analysis of large space trusses and the design of structures.
期刊介绍:
The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.