Auto Encoding Explanatory Examples with Stochastic Paths

C. Ojeda, Ramsés J. Sánchez, K. Cvejoski, J. Schücker, C. Bauckhage, B. Georgiev
{"title":"Auto Encoding Explanatory Examples with Stochastic Paths","authors":"C. Ojeda, Ramsés J. Sánchez, K. Cvejoski, J. Schücker, C. Bauckhage, B. Georgiev","doi":"10.1109/ICPR48806.2021.9413267","DOIUrl":null,"url":null,"abstract":"In this paper we ask for the main factors that determine a classifier’s decision making process and uncover such factors by studying latent codes produced by auto-encoding frameworks. To deliver an explanation of a classifier’s behaviour, we propose a method that provides series of examples highlighting semantic differences between the classifier’s decisions. These examples are generated through interpolations in latent space. We introduce and formalize the notion of a semantic stochastic path, as a suitable stochastic process defined in feature (data) space via latent code interpolations. We then introduce the concept of semantic Lagrangians as a way to incorporate the desired classifier’s behaviour and find that the solution of the associated variational problem allows for highlighting differences in the classifier decision. Very importantly, within our framework the classifier is used as a black-box, and only its evaluation is required.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"24 1","pages":"6219-6226"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9413267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we ask for the main factors that determine a classifier’s decision making process and uncover such factors by studying latent codes produced by auto-encoding frameworks. To deliver an explanation of a classifier’s behaviour, we propose a method that provides series of examples highlighting semantic differences between the classifier’s decisions. These examples are generated through interpolations in latent space. We introduce and formalize the notion of a semantic stochastic path, as a suitable stochastic process defined in feature (data) space via latent code interpolations. We then introduce the concept of semantic Lagrangians as a way to incorporate the desired classifier’s behaviour and find that the solution of the associated variational problem allows for highlighting differences in the classifier decision. Very importantly, within our framework the classifier is used as a black-box, and only its evaluation is required.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机路径的自动编码解释性示例
在本文中,我们提出了决定分类器决策过程的主要因素,并通过研究自动编码框架产生的潜在代码来揭示这些因素。为了解释分类器的行为,我们提出了一种方法,该方法提供了一系列突出分类器决策之间语义差异的示例。这些例子是通过隐空间插值生成的。我们引入并形式化了语义随机路径的概念,作为一个通过潜在代码插值在特征(数据)空间中定义的合适的随机过程。然后,我们引入语义拉格朗日量的概念,作为整合所需分类器行为的一种方式,并发现相关变分问题的解决方案允许突出分类器决策中的差异。非常重要的是,在我们的框架中,分类器被用作黑盒,只需要对其进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory representation learning for Multi-Task NMRDP planning Semantic Segmentation Refinement Using Entropy and Boundary-guided Monte Carlo Sampling and Directed Regional Search A Randomized Algorithm for Sparse Recovery An Empirical Bayes Approach to Topic Modeling To Honor our Heroes: Analysis of the Obituaries of Australians Killed in Action in WWI and WWII
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1