FedDANE: A Federated Newton-Type Method

Tian Li, Anit Kumar Sahu, M. Zaheer, Maziar Sanjabi, Ameet Talwalkar, Virginia Smith
{"title":"FedDANE: A Federated Newton-Type Method","authors":"Tian Li, Anit Kumar Sahu, M. Zaheer, Maziar Sanjabi, Ameet Talwalkar, Virginia Smith","doi":"10.1109/IEEECONF44664.2019.9049023","DOIUrl":null,"url":null,"abstract":"Federated learning aims to jointly learn statistical models over massively distributed remote devices. In this work, we propose FedDANE, an optimization method that we adapt from DANE [8], [9], a method for classical distributed optimization, to handle the practical constraints of federated learning. We provide convergence guarantees for this method when learning over both convex and non-convex functions. Despite encouraging theoretical results, we find that the method has underwhelming performance empirically. In particular, through empirical simulations on both synthetic and real-world datasets, FedDANE consistently underperforms baselines of FedAvg [7] and FedProx [4] in realistic federated settings. We identify low device participation and statistical device heterogeneity as two underlying causes of this underwhelming performance, and conclude by suggesting several directions of future work.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"25 1","pages":"1227-1231"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9049023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108

Abstract

Federated learning aims to jointly learn statistical models over massively distributed remote devices. In this work, we propose FedDANE, an optimization method that we adapt from DANE [8], [9], a method for classical distributed optimization, to handle the practical constraints of federated learning. We provide convergence guarantees for this method when learning over both convex and non-convex functions. Despite encouraging theoretical results, we find that the method has underwhelming performance empirically. In particular, through empirical simulations on both synthetic and real-world datasets, FedDANE consistently underperforms baselines of FedAvg [7] and FedProx [4] in realistic federated settings. We identify low device participation and statistical device heterogeneity as two underlying causes of this underwhelming performance, and conclude by suggesting several directions of future work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FedDANE:联邦牛顿型方法
联邦学习旨在联合学习大规模分布式远程设备上的统计模型。在这项工作中,我们提出了FedDANE,这是一种优化方法,我们改编自DANE[8],[9],这是一种经典的分布式优化方法,用于处理联邦学习的实际约束。在学习凸函数和非凸函数时,我们提供了收敛性保证。尽管理论结果令人鼓舞,但我们发现该方法的实证表现并不尽如人意。特别是,通过对合成数据集和真实数据集的经验模拟,FedDANE在现实联邦设置中的表现始终低于fedag[7]和FedProx[4]的基线。我们确定低设备参与和统计设备异质性是导致这种表现不佳的两个潜在原因,并提出了未来工作的几个方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised learning by a "softened" correlation game: duality and convergence Radar Beampattern Design for a Drone Swarm A Statistical Approach to Dynamic Synchrony Analysis of Neuronal Ensemble Spiking [Copyright notice] Phase Transition Analysis for Covariance Based Massive Random Access with Massive MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1